
Notes of Computability and Computational

Complexity

Marco Calautti

marco[dot]calautti[at]unimi.it
Department of Computer Science

University of Milan

Abstract

These lecture notes were prepared over the 3 years of teaching the
Computability and Computational Complexiry course at the University
of Trento, while serving as an Assistant Professor between 2020 and 2022.
The goal of these notes is to offer both lecturers and students a compre-
hensive yet digestible overview of the foundational concepts in the field.
Organized into concise chapters of 6-8 pages each, the material covers a
wide spectrum, from basic computability theory, including Turing ma-
chines, their expressiveness, and the boundaries of decidability and unde-
cidability, to fundamental concepts in computational complexity, such as
NP-completeness, space complexity, and a brief introduction to optimiza-
tion problems.

Motivation. The hope is that the lecture notes will support the stu-
dents’ learning process, providing a clear and accessible guide to both
the theoretical foundations and the practical significance of the field. For
what is worth, my students seemed to really appreciate the lecture notes,
and in particular they found the narrative that ties the topics together
very useful to keep having the big picture in mind. Each concept is moti-
vated by the practical need to understand the limitations of computation,
and the implications of the theoretical results are explored in a way that
highlights, when appropriate, their relevance in the real-world.

Organization. The lecture notes are organized in 24 chapters, compris-
ing both theory and exercises, where each chapter should support a 2
hours lecture. Hence, the notes were meant to support a 48 hours course,
mainly aimed at first year Master students, or 3rd year undergraduate
students. The lectures are organized in a way that students only need
a basic background on set theory, and simple logical reasoning, such as
knowing the difference between a sufficient and a necessary condition in a
statement, what ”iff” means, etc. Having some background in Algorithms
and Data Structures would be useful but it is not mandatory.

Distribution. The lecture notes are licensed under the CC BY-NC-SA
4.0 license, which means you are free to redistribute and modify the lecture

i

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Marco Calautti Notes of Computability and Computational Complexity

notes as you like for non-commercial use, as far as you give proper credit
to the original author, and distribute your modifications under the same
license. Thus, I would be grateful if those who use the notes for their
courses will give appropriate credit by linking to my repository where the
original notes are hosted, and if you find any mistakes or have suggestions
for improvements, I would be very happy to hear from you!

Here are the books I mostly used as a reference for writing the notes:

• John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation

• Michael Sipser. Introduction to the Theory of Computation

• Sanjeev Arora, Boaz Barak. Computational Complexity: A Modern
Approach

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 4.0 International” license.

ii

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Marco Calautti Notes of Computability and Computational Complexity

Contents

1 Problems, Algorithms and a glimpse of undecidability 1

2 Alphabets, strings, languages and Turing Machines 6
2.1 Introduction to Turing Machines 9

3 Input size, execution time and power of TMs 14
3.1 The Power of TMs . 15

4 Non-deterministic TMs and Exercises on TMs 21
4.1 Exercise 1 . 26
4.2 Exercise 2 . 26
4.3 Exercise 3 . 27
4.4 Exercise 4 . 28
4.5 Exercise 5 . 29

5 Universality, Limits of TMs and Computational Classes 30
5.1 The Universal TM . 31
5.2 Limits of TMs . 33
5.3 Computational Classes . 35
5.4 Properties of recursive and recursively enumerable languages . . 36

6 Universal Language and the Halting Problem 38
6.1 The Halting problem . 40

7 Reductions and the Le, Lne languages 45
7.1 Emptiness of a TM’s language . 48

8 More on Reductions 53
8.1 Post Correspondence Problem (PCP) 53
8.2 The Tiling Problem . 58

9 Rice’s Theorem 64

10 More exercises on TMs and undecidability 70

11 Introduction to Computational Complexity 75
11.1 The Complexity class P . 75
11.2 The Complexity class NP . 78

12 P vs NP and NP-completeness 84
12.1 NP−complete languages . 84
12.2 Another NP−complete language 87

iii

Marco Calautti Notes of Computability and Computational Complexity

13 Some NP−complete languages 92
13.1 Independent set . 92
13.2 Vertex Cover . 95
13.3 Clique . 96

14 More NP−complete languages 99
14.1 Binary Integer Programming . 99
14.2 Vertex Coloring . 101

15 Alternative definition of NP 106

16 Cook’s Theorem 111
16.1 Some remarks on the proof . 118

17 Complements of NP languages and other time classes 120
17.1 coNP . 120
17.2 EXP and NEXP . 125

18 Space Complexity, and the classes LOGSPACE and NL 127
18.1 The space classes LOGSPACE and NL 128

19 Savitch’s Theorem 134

20 Turing Machines with Oracles, the Polynomial Hierarchy, and
Search Problems 140

21 The Travelling Salesman Problem 148
21.1 Directed Hamiltonian cycle . 150

22 Exercises on TMs and undecidability 158
22.1 Undecidability . 159

23 Exercises on NP−completeness 164
23.1 SUBSETSUM . 164
23.2 KNAPSACK . 166
23.3 DOMINATINGSET . 167

24 More exercises on NP−completeness and Search problems 169

iv

Marco Calautti Notes of Computability and Computational Complexity

1 Problems, Algorithms and a glimpse of unde-
cidability

Until now, most of you have been focusing, during their studies, on algorithms.
That is, an algorithm is a finite sequence of basic instructions (in some pro-
gramming language), that in a finite amount of time, solves a certain problem,
given some data as input. Usually, you were already given a problem, and the
focus was to devise an algorithm solving it.

Examples of problems are: given an array of integers v and an integer x, find
the position in the array in which x occurs, or given a directed graph G = (V,E),
with V a set of nodes, that are connected by an edge occurring in E, a starting
node s and a ending node t, check whether there is a path from s to t in the
graph G.

In this course, we will switch our focus on problems rather than algorithms.
In particular, the course is made of two main parts.

The first one is computability theory, whose aim is to answer questions like

“Can this problem be solved by an algorithm?
(In other words, is there an algorithm that for every input, provides the right

answer to the problem?)”

Problems of the above kind are called computable.
Another kind of question that computability theory aims at answering is:

“If two problems are not computable, can we still conclude that one is harder
than the other, and which is harder?”.

The first question might seem strange, as we are so used to solve everything
with a program, app, etc., that it is strange to believe that there exist problems
that cannot be solved by an algorithm. As we are going to see informally later,
such problems actually exist. In the next lectures we will tackle these questions
more rigorously, by properly defining the notions of problem, algorithm, and we
will identify some of their important properties.

The second part of the course is complexity theory : assume we know that a
problem is actually computable. Clearly, the fact that an algorithm exists that
for every input, provides the right answer to the problem does not say much
on how hard the problem is, i.e., what are the resources in terms of time and
memory required to solve the problem?

One of the main questions complexity theory asks is

“What makes a problem harder than others in terms of resource usage?”.

Search and decision problems. We distinguish between two main kinds of
problems:

• Search problems: these are the problems that ask to search/construct some
solution/output, for some given input. For example, search/construct the
position (i.e., an integer) in which the number x occurs in v.

1

Marco Calautti Notes of Computability and Computational Complexity

• Decision problems: these are the problems whose answer is only of the
form “yes” or “no”. For example, given a graph G and nodes s and t, the
problem asking “Is there a path from s to t in G?” is a decision problem.

The input of a problem is also usually called instance of the problem.
Often, search problems have a corresponding decision problem, and vice

versa. For example, given an array v and number x, we might only ask “Does
x occur in some position in v?”. Clearly, a search problem is at least as hard
as its decision version, because we could solve the decision version by finding a
solution to the search one. For example, if we find in which position x occurs
in v, then the answer is “yes”, otherwise, if no position is found, the answer is
“no”.

So, usually, to simplify the discussion, one focuses on decision problems, as
if one is not able to solve a decision problem, there is no hope to solve its search
version. In the rest, we will mostly focus on decision problems.

Example of uncomputable problem. We will now see an example of an
uncomputable problem.

In particular, when focusing on a decision problem, we use the word decidable
in place of computable, and undecidable in place of uncomputable, but they
essentially mean the same thing.

Assume we are working with Python (or C++/Java, doesn’t matter), and so
we write all our algorithms in Python. Consider the following simple function
that counts the number of white spaces in a given string:

def countSpaces(myString):

count = 0

i = 0

while i < len(myString):

if myString[i]==’ ’:

count = count + 1

i = i + 1

return count

Can you see the problem with this function? The author of the function has
wrote the i = i + 1 inside the if statement, rather than outside. This means
that if the input string is, e.g., ”abc d”, the above function, rather than halting
and returing the count of white spaces, it will not halt (i.e., it will run forever),
because the first character is not a white space, and thus the index i will never
be incremented.

It would be nice if we had an algorithm (again written, for example in
Python) that is able to catch these kinds of bugs, even for very simple functions
like the one above, that takes as input only one string.

So, let us call Python functions taking only one string one-string functions.
Then, we would like to have some algorithm that is able to solve the following
problem:

2

Marco Calautti Notes of Computability and Computational Complexity

PROBLEM : HALTING
INPUT : A string P representing the source code of a one-string function,

e.g., P=”def someFunc(someString)...”, and another string I.
QUESTION : Does the function in P halt when executed with I as input?

Clearly, you could start coming up with your own algorithm that tries to
solve the above problem. Indeed, for very basic programs like countSpaces
above, it is not difficult to write an algorithm that can understand whether it
halts with a given input (e.g., you could check whether the variable i is always
incremented, when there is a while of the form while i < ...).

However, what we are going to prove is that, not matter how hard you try,
and how clever your algorithm is, there will always be some input P and I for
which your algorithm will not be able to give the right answer to the HALTING
problem.

So, essentially, we are going to prove the following:

HALTING is undecidable.
(In other words, there is no algorithm that for every input P and I, gives the

correct answer to the HALTING problem)

Informal proof. The proof we are going to provide is by contradiction. That
is, assume, towards a contradiction, that indeed we have some algorithm, let
us call it HaltChecker, that given any source code P of a one-string function,
and an input string I, replies ”yes” if the function halts with input I, and ”no”
otherwise.

One can visualize HaltChecker as in the picture above, or if you want to
think of its actual code, it will look like this:

def HaltChecker(P,I):

...

So, for example, if we give as input to HaltChecker P=”def countSpaces

...” and I=”abc”, HaltChecker will return ”no”, since we have shown that

3

Marco Calautti Notes of Computability and Computational Complexity

countSpaces does not halt with input ”abc”. However, giving as input P=”def
countSpaces...” and I=” ”, HaltChecker will return ”yes”. Actually,

according to our assumption, no matter how P and I look like, HaltChecker will
always provide the right answer to the HALTING problem.

Since we assume HaltChecker exists, we can use it to costruct other al-
gorithms that rely on it. In particular, let us try constructing the following
algorithm:

What the above algorithm does, which we call Reverser, is to take as input
the source code P of a one-string function and it asks to HaltChecker what that
function will do if we give it as input its own source code. If HaltChecker replies
that the function halts, then Reverser will go in an endless loop. Otherwise, if
HaltChecker concludes that the function would not halt, then Reverser simply
does nothing and stops.

One could implement Reverser as the following python code:

def Reverser(P):

halts = HaltChecker(P,P)

if halts=="yes":

while(True):

pass

For example, if we give as input to Reverser the source code P=”def
countSpaces...”, it will check if countSpaces halts with input the string of
its source code. Since its source code starts with ”def”, countSpaces does
not halt, and thus HaltChecker(P,P) returns ”no”. Hence, Reverser will simply
finish execution. On the other hand, if we gave Reverser the source code P of
a function that actually halts with input its source code, Reverser would loop
forever.

That is why we call it Reverser: it does the opposite of what the function in
P would do, if given its source code as input.

4

Marco Calautti Notes of Computability and Computational Complexity

Everybody can agree on the fact that Reverser is a very strange, and prob-
abily useless function. However, it nonetheless exists, assuming HaltChecker
exists. So, let us play a bit with it, and let us see what it does with other
inputs.

Question: What happens if we execute Reverser with input
P=”def Reverser...”? That is, we give it as input its own source code!

So, let us track down this execution. First, Reverser will take its own source
code P as input, and will give (P,P) as input to HaltChecker. Let us now
distinguish two cases.

1. Assume that HaltChecker answers ”yes”. Since HaltChecker always pro-
vides the right answer, by assumption, this means that Reverser would
halt when given its own source code as input. Continuing with the ex-
ecution, Reverser now checks this answer, and it then decides to loop
forever. So Reverser actually does not halt with input its source code,
while HaltChecker said otherwise. This contradicts our assumption that
HaltChecker is always correct!

2. So, it must mean that HaltChecker answers ”no”. However, if this is the
case, then Reverser would not halt when given as input its source code.
Continuing with the execution, Reverser now checks this answer, and it
then decides to finish. So, Reverser actually halts with input its source
code, while HaltChecker said otherwise. This again contradicts the fact
that HaltChecker is always correct!

So, we concluded that there are inputs for which HaltChecker is not able to
provide the right answer (in this case, such an input is (P,P), where P is the
source code of the function Reverser). This contradicts our initial assumption
that HaltChecker is always correct, and thus, we conclude that an algorithm like
HaltChecker that is able to solve the HALTING problem for very input cannot
exist. Hence, HALTING is undecidable.

Remark: Let me emphasize again that what we have just proved is that there
is no general algorithm that is able to solve the HALTING problem for all inputs.
We can very well come up with very smart algorithms that give the right answer
for many inputs (P,I), but they will never be perfect. There will always be some
source code P of a function and its input I for which your smart algorithm will
not be able to answer correctly.1

1There is a very nice video on YouTube that explains the undecidability of the HALTING
problem at an even higher level. I highly suggest taking a look: https://www.youtube.com/

watch?v=92WHN-pAFCs

5

https://www.youtube.com/watch?v=92WHN-pAFCs
https://www.youtube.com/watch?v=92WHN-pAFCs

Marco Calautti Notes of Computability and Computational Complexity

2 Alphabets, strings, languages and Turing Ma-
chines

In order to study problems and their properties in a rigorous way, we first need
to formally define the notion of problem. Intuitively, whenever we think of a
problem, we think of some kind of input we are given, and some task we need
to solve, using that input. The task is then to produce some output (search
problem) or just provide a “yes”/”no” answer. In the most abstract sense, we
can think of inputs to our problems as strings over a certain alphabet, encoding
the input to the problem. For example, consider the problem, given an array v
of integer and an integer x, asking to find the position where x occurs in v. The
input to this problem can be represented with a string of the form

([1, 4, 7, 1, 2], 2),

where [1, 4, 7, 1, 2] is the input array v and 2 is the integer x. Similarly, the
output of the problem (which is an integer), can be represented with a string
over the alphabet {0, 1, . . . , 9}. So the overall alphabet for the input and output
strings of our problem is the set of symbols

Σ = {′[′,′]′,′ (′,′)′,′ ,′ , 0, 1, . . . , 9}.

Let’s recall some notation that will be useful in the rest. An alphabet is a
finite set of symbols, and it is usually denoted with Σ. We use Σn to denote all
the strings of length n ≥ 0 using symbols from the alphabet Σ. For example, if
Σ = {a, b, c}, then

Σ2 = {aa, ab, ac, ba, bb, bc, ca, cb, cc}.

Moreover, we use Σ∗ to denote the set of all possible strings (of any finite length,
including the empty string), using symbols from the alphabet Σ. That is:

Σ∗ =
⋃
n≥0

Σn.

Since the empty string is, well... empty, when we want to use it explicitly
somewhere in our formulas, we use ϵ to denote it. So, for example, if Σ = {0, 1};
then:

Σ∗ = {ϵ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, . . .}.

We can now formally defined what a problem is for us.

Definition 1. A problem over an alphabet Σ is a function of the form

f : Σ∗ → Σ∗.

6

Marco Calautti Notes of Computability and Computational Complexity

So, a problem is described as a function that maps each input, encoded via
some string in Σ∗, to the right corresponding output (again, encoded as a string
in Σ∗).

Note that we allow functions to take any string from Σ∗ as input, but clearly,
there are strings in Σ∗ that do not represent valid inputs to the problem the
function represents, e.g.][, (2, 42]] does not encode an array of integers. To solve
this issue, we could be even more precise, and require that the function defining
a certain problem should not have Σ∗ as the domain, but a subset D ⊆ Σ∗ that
contain only strings encoding valid inputs to the problem.

However, this would complicate our mathematical treatment, as we will no
longer be able to treat problems uniformily. Indeed, having problems take as
input arbitrary strings in Σ∗ is not a big deal. Say, for example, our problem
takes as input strings encoding an array of integers, e.g, [3,5,12,20]. One can
always slightly extend the problem to a new problem that takes as input any
string from Σ∗ such that: if the string is a bad encoding of an array, then the
output is some default, ”don’t care” value (e.g., the empty string ϵ), otherwise,
if the input properly encodes an array, the output is the one expected by the
original problem.

The new problem is fundamentally the same as the original one, except for
this minor check on the validity of the input, which does not affect at all the
difficulty of solving it. Indeed, any algorithm that is able to solve the original
problem can easily solve the new one by first verifying if the input is valid, and
in case it is, perform the same computation as before.

For example, consider the problem of finding the minimum element in a
given array v of integers. Our alphabet is

Σ = {′[′,′]′,′ (′,′)′,′ ,′ , 0, 1, . . . , 9}.

the function representing this problem is the function f : Σ∗ → Σ∗ such that,
for each w ∈ Σ∗

f(w) =

{
ϵ if w is not a valid encoding of an array

min(v) if w encodes a valid array v.

Since, as discussed, it is very easy, for an algorithm, to verify whether the
input string is valid (if using a reasonable encoding), when defining problems,
we will often omit the part discussing how bad inputs are dealt with (as this
is always the same: if input is bad, output a default value). So, to simplify
the discussion, we will define all our problems be specifing what is the expected
output, assuming the input is properly encoded.

The above definition of problem is about search problems, i.e., given some
input, we specify what we should construct as output.

If we want to focus on decision problems, i.e., with only “yes”/”no” answers,
we use the following definition:

Definition 2. A decision problem over an alphabet Σ is a function of the form:

f : Σ∗ → {0, 1}.

7

Marco Calautti Notes of Computability and Computational Complexity

So, we limit the output of the function to only be 0 (“no”) or 1 (“yes”).
Also here, we have the same ”issue” with badly encoded inputs. The question

is: what would be this default value to output, when the input is badly encoded?
For decision problems, the default is 0 (i.e., ”no”). Indeed, if a string does not
encode a valid input to the decision problem, it is impossible for the string to
satisfy any property requested by the problem, and so the answer is necessarily
”no”.

Example decision problem. Let’s see an example of a decision problem over
graphs. A graph can be depicted as a set of nodes (drawn as circles), where the
nodes are connected by some edges.

If the edges are oriented, the graph is directed, otherwise it is undirected. So,
we can represent a graph as a pair G = (V,E), where V is the set of nodes,
represented with integers, and E ⊆ V 2 is a set of pairs (u, v) denoting the fact
that there is a (directed) edge from node u to v. For example, the graph above is
represented by the string ({1, 2, 3, 4, 5}, {(1, 4), (2, 1), (2, 3), (4, 3), (5, 4), (3, 5)}).
So, the alphabet is

Σ = {′{′,′ }′,′ (′,′)′, 0, 1, . . . , 9}.

We want to consider the following decision problem:

PROBLEM : REACHABILITY
INPUT : A directed graph G = (V,E) and two nodes s, t ∈ V .
QUESTION : Is there a path from s to t?

For example, with the graph above and s = 1 t = 5, the answer is “yes”. The
problem REACHABILITY, is essentially the following function, for every string
w ∈ Σ∗ encoding a graph G = (V,E) and two nodes s, t:

REACHABILITY(w) =

{
1 if there is a path from s to t in G, and

0 otherwise

8

Marco Calautti Notes of Computability and Computational Complexity

Note that here we are saying what the problem requires as output, only for
properly encoded inputs, but we should always have in mind that the problem
is well-defined also when the input string w is a bad encoding, for which the
answer is implicitly 0.

Decision problems as languages. Note that since decision problems only
require to output either 0 or 1, we can equivalently define a decision problem
as simply the set of strings in Σ∗ for which the answer to the problem is “yes”.
For example, REACHABILITY is the set of all strings in Σ∗ the form G, s, t,
where G is a directed graph and s, t are two nodes, such that there is a path
from s to t in G.

In other words, decision problems can be defined as languages, i.e., subsets
of the whole set of all possible strings over the alphabet. As another example,
consider the decision problem of checking whether, given an array of integers v,
the sum of all integers in v is 0. Once we define the right alphabet Σ, we define
the problem, which we can call ZEROSUM, as the language

ZEROSUM = {w ∈ Σ∗ | w encodes an array v of integers, such that

|v|∑
i=1

v[i] = 0}.

So, we observe that

given a string, solving a decision problem for that string is equivalent to check
whether the string belongs or not to the language corresponding to the problem.

As discussed in the previous lecture, for simplicity, we will focus only on decision
problems, and hence on languages.

2.1 Introduction to Turing Machines

Now that we know what we mean by “problem”, we need to formalize the notion
of “algorithm”. In particular, to understand which problems can be solved and
which cannot, we need to understand the kind of computations we can perform,
i.e., the kind of machines on which we execute our algorithms. We have many
options, we could use standard computers, but they are quite complicated. Also,
it is not difficult to understand that many parts of modern computers are not
really needed to solve problems. For example, we could get rid of graphics
cards, as it is just another kind of CPU in the machine, that the main CPU can
simulate and so on. So, the question is,

“What is the simplest model of computation that is powerful enough to solve
all problems that can be solved by any other model of computation?”

In the Theory of Computation literature, there has been a general consensus
that this is the so called Turing Machine.

This is a very simple, theoretical machine devised by Alan Turing in the
1930s. The following picture shows how a TM looks like.

9

Marco Calautti Notes of Computability and Computational Complexity

The data the machine works with is stored in an infinitely long tape (on
both sides).

The tape is divided into cells, where each cell can contain some symbol.
When the machine starts execution, the tape contains the input string, and
on the left and right side, it is filled with a special symbol ⊔ called the blank
symbol.

Then, there is a control component, that can read and write on the tape one
cell at the time with a head.

The head is placed at the beginning of the input string, when it starts
execution.

The control of the machine describes what the machine should do, according
to the value the head is currently reading, and according to the internal state
of the machine.

Let us consider as an example the following decision problem:

{0n1n | n ≥ 0}.

That is, given a string of 0s and 1, is the string of the form 0n1n?
This is a possible Turing machine that solves the problem.

10

Marco Calautti Notes of Computability and Computational Complexity

Syntax. We now formally define a Turing Machine.

Definition 3. A Turing machineM is a tuple (Q,Σ,Γ, δ, q1, qaccept, qreject),where

1. Q is the set of states;

2. Σ is the input alphabet, not containing the blank symbol ⊔;

3. Γ is the tape alphabet, such that Σ ⊆ Γ, and ⊔ ∈ Γ;

4. q1 is the initial (or start) state;

5. qaccept ∈ Q is the accepting state;

6. qreject ∈ Q is the rejecting state;

7. δ : Q \{qaccept, qreject}×Γ → Q×Γ×{L,R, S} is the transition function.

Note that we distinguish between the input alphabet and the tape alphabet.
This is because the input alphabet is the alphabet of the problem that the
machine is trying to solve, but the machine might need some additional symbol
to do its work.

Also note that the transition function takes as inputs a state that is not
qaccept, qreject, as when the machine reaches these states, it terminates its exe-
cution, and a tape symbol, and tells the machine what to do at the given state
and tape symbol, i.e., in which state it should move, what is the new symbol
the machine places in the tape at the current position, and where the head of
the machine should move.

The Turing machine of the figure before is thus the tuple (Q,Σ,Γ, δ, q1, qaccept, qreject),
where

1. Q = {q1, qfind1, qgoback, qexit, qaccept, qreject};

2. Σ = {0, 1};

3. Γ = {0, 1, X, Y,⊔};

Moreover, δ is the following function, that we can represent with a table:

δ 0 1 X Y ⊔
q1 (X, qfind1, R) (1, qreject, S) (X, qreject, S) (Y, qexit, R) (⊔, qaccept, S)
qfind1 (0, qfind1, R) (Y, qgoback, L) (X, qreject, S) (Y, qfind1, R) (⊔, qreject, S)
qgoback (0, qgoback, L) (1, qreject, S) (X, q1, R) (Y, qgoback, L) (⊔, qreject, S)
qexit (0, qreject, S) (1, qreject, S) (X, qreject, S) (Y, qexit, L) (⊔, qaccept, S)

So, the TM M solves the problem above (i.e., it is an algorithm solving it),
because whenever it takes as input a string w of 0s and 1s, it always halts, and
it halts in the accepting state if the string is of the form 0n1n, in which case we
say that M accepts w, otherwise, M halts in the rejecting state, in which case
we say that M rejects w. Let us formalize these notions.

11

Marco Calautti Notes of Computability and Computational Complexity

Semantics. If M is a TM that is executed with input string w, note that at
each step, the machine must have only visited a finite number of cells. Hence,
at each step, the only relevant information for the machine is the finite part
of the tape that contains all the cells where the input was placed, plus all the
other cells the machine has visited. We call this part of the tape, the relevant
part of the tape.

Hence, if one imagines that the machine “loses power” and “shuts down”,
the only information that we would need to remember before the shutdown, to
perfectly restore the computation of M with input w at that point is

1. The relevant part of the tape;

2. The current state;

3. The position of the head.

We call these three informations together an instantaneous description (ID)
of the machine M with input w. If at some step, the relevant part of the tape
is the string α1, α2, . . . , αn, the current state is q and the head is positioned on
the cell with symbol αi, we can compactly represent the ID with the expression

α1, α2, . . . , αi−1qαi, . . . , αn.

That is, by placing the state q on the left of the symbol pointed by the head.

If we consider the TM of the previous example, and the string w = 0011, an
ID of M with input w is

q10011.

That is, the ID of the machine when it starts execution. If we have a look at
the transition function, the next ID should be:

Xqfind1011.

Then, we say that an ID

α1, . . . , αi−1qαi, . . . , αn

yelds the ID
α1, . . . , αi−1, β, q

′, αi+1, . . . , αn,

if δ(q, αi) = (q′, β, R). The definition of “yelds” for left-moves and stay-moves
is similar.

For example, q10011 yelds Xqfind1011. The notion of “yelds” captures the
behaviour of the machine, when it performs a single step.

We can now finally define what we mean that a machine accepts/rejects its
input.

The initial ID of M with input string w = w1w2 · · ·wn is the ID

q1w1w2 · · ·wn.

For example, q10011 is the initial configuration. An accepting ID is any ID
whose state is qaccept, and a rejecting ID is any ID whose state is qreject.

12

Marco Calautti Notes of Computability and Computational Complexity

Definition 4. Consider a TM M with input alphabet Σ and an input string
w = w1 · · ·wn ∈ Σ∗. We say that M accepts (resp., rejects) w if there is a
sequence of IDs C1, . . . , Cm such that:

1. C1 is the initial ID of M with input w, i.e., C1 = q1w1 · · ·wn;

2. Ci yelds Ci+1, for 1 ≤ i < m;

3. Cm is an accepting (resp., rejecting) configuration.

For example, considering the previous TM and the input w = 01, we have
that

q101 yelds Xqfind11 yelds qgobackXY yelds Xq1Y yelds XY qexit⊔ yelds
XY qaccept ⊔ .

Hence M accepts w.
The language of a TM, or the language accepted by a TM M , denoted L(M),

is the set of all strings accepted by M . That is

L(M) = {w ∈ Σ∗ |M accepts w}.

Remark. Note that the fact that M accepts a language L does not nec-
essarily imply that M is also able to reject all the other strings. In fact, M
could never halt with such strings as input. So, by just saying that M accepts a
language L we cannot conclude yet that M is an algorithm solving the decision
problem represented by L. For this, we need that the machine should not only
be able to determine whether a given string is in L, i.e., when the answer to
the problem is “yes” M accepts, but M should also be able to reject an input
string not in L, i.e., it should halt in the rejecting state. In this case, we say
that M decides the language L. We will go into more details on this later on in
the course.

For example, the TM M of the previous example accepts the language

L(M) = {0n1n | n ≥ 0}.

Moreover, we also know thatM rejects every other string not in the language,
so not onlyM accepts the language, but it also decides the language (i.e., solves
the decision problem described by the language).

13

Marco Calautti Notes of Computability and Computational Complexity

3 Input size, execution time and power of TMs

For a string w ∈ Σ∗, we use |w| to denote the length (number of symbols) in
the string w. For example, the string 0110 ∈ {0, 1}∗ is such that |0110| = 4.

We now want to measure the time needed by a TM M to perform a compu-
tation when given a string of a certain length n. How many steps the machine
M requires to accept or reject a string of length n? It depends on the specific
string, so we define the time as the maximum number of steps the machine
requires, among all input strings of length n.

Definition 5. The time required by a TM M with inputs of length n, denoted
TM (n), is the maximum number of steps that M performs with an input string
of length n in order to accept or reject. If there is an input of length n for which
M loops, we say that TM (n) = ∞.

For example, consider the TM we have seen in the previous lecture.

Let us consider inputs of length n = 2. If we consider the string w = 01, then
the number of steps is 5, because the sequence of IDs that reaches an accepting
configuration is:

q101 → Xqfind11 → qgobackXY → xq1Y → XY qexit⊔ → XY qaccept⊔.

But with input string w = 11, we only have 1 step:

q111 → 1qreject1.

14

Marco Calautti Notes of Computability and Computational Complexity

It is not difficult to verify that the number of steps in the worst case is
always achieved when the input string belongs to the language {0n1n | n ≥ 0}.
Now, counting the number of steps of a machine, precisely, can easily become
unmanageable. So, rather than focusing on the exact number of steps, we are
only interested in the asymptotic growth of the number of steps.

Most of you should be familiar with the notion of big-Oh. We recall it here.

Definition 6. Consider two functions f : N → N and g : N → N. We say
that f(n) is a big-Oh of g(n), written f(n) ∈ O(g(n)), if there are constants
c ≥ 0, N ≥ 0 such that f(n) ≤ c · g(n), for each n ≥ N0.

Intuitively, the rate of growth of f(n) is at most the rate of growth of g(n).
For example, f(n) = n2 + n is a big-Oh of g(n) = n3.

Example 1. Let’s analyse the time required by the example TMM with a string
of length n. The worst case is when the string belongs to the language. The
machine, first scans n/2 cells, placing X and Y on the first 0 and 1 respectively
and then goes back n/2 cells. So, one pass requires “roughly” n steps (excluding
some constant factor). The machine performs n/2 passes. So, roughly n2/2
steps. Finally, the machine scans the remaining Y ’s, that are n/2. So, overall,
the machine requires roughly n2/2 + n/2 steps. Thus, TM (n) ∈ O(n2).

3.1 The Power of TMs

We said at the beginning of the course that we use TMs because they form
a simple computational model, but at the same time they would allow us to
solve all solvable problems. But why is that? Maybe we can make our TMs
more powerful by adding some “optionals”, which would allow these machines
to solve more problems.

Let’s see some possible extensions.

Multi-track TMs. One might say that storing only a symbol in a single cell
might be limiting for a TM. Modern computers are able to store whole bytes in a
single memory cell, so 8 symbols (bits). Let us try extending our computational
model in this regard.

A multi-track TM, with k tracks is a standard TM, where each cell is divided
in k tracks (i.e., contains k symbols).

15

Marco Calautti Notes of Computability and Computational Complexity

The machine still has one head that moves around, but the head can read
all the k symbols in a cell all at once, and writes all k symbols in cell at the
same time.

A transition in the transition function of a multi-track TM looks something
like

qi
0100→0000,L−→ qj .

Now, the question is: are multi-track TMs “more powerful” than standard
TMs? Moreover, what do we mean by “more powerful”? Intuitively, we com-
pare two computational models by comparing the languages their machines can
accept.

If they are able to accept the same languages, they are equally powerful.
Clearly, every language a single-tape TM accepts can also be accepted by a TM
with k tracks (just use k = 1 tracks).

Surprisingly, we are going to prove also that every language a multi-track
TM accepts can also be accepted by a single-tape TM.

Theorem 1. Let M be multi-track TM. Then, there exists a single-tape TM
M ′ such that L(M) = L(M ′). Moreover, TM ′(n) ∈ O(TM (n)).

Proof. We show how a single-tape TM can simulate the behaviour of a multi-
track TM. Assume M is a TM with k tracks. The idea is to store the k symbols
of each cell in the tape of M into k contiguous cells in the tape of M ′. If we
consider the example above, we will store the cell containing the symbols 0100
into 4 cells:

Now, whenever there is a transition in M like the one in the example above,
M ′ needs k steps to do what M does in one step. That is, it first reads the 0,
replaces it with 0 and moves to the right. Then reads 1, replaces it with 0 and
moves to the right. And so on. Then, M ′ needs to move its head on the left,
and thus needs to move the head 2k positions on the left. So, clearly, if for an
input string w, M reaches the accepting state, so will M ′, and vice versa. It
will only take some more steps to do it. Thus, L(M) = L(M ′).

How many more steps? In the worst case, one step by M requires 3k steps
by M ′: k for updating the symbols, and 2k to move on the left. The right and
stay moves require less steps.

So, if TM (n) is the time required by M , M ′ requires at most 3k · TM (n)
steps. So, they only differ by a constant factor, hence TM ′(n) ∈ O(TM (n)).

16

Marco Calautti Notes of Computability and Computational Complexity

Multi-tape TMs. One might say that using multiple tracks was a very simple
addition. What if we give the machine access to more than one tape? Can it per-
form more computations than normal single-tape machines. Let us informally
introduce multi-tape TMs. The structure is similar to single-tape machines, the
only difference is that the control can read and/or write multiple tapes, and
each tape has its own dedicated head.

The input string is placed in the first tape, all the others contain only blanks.
An example transition in a multitape TM is of the form:

qi

1:a→a,R
2:b→c,L
3:c→⊔,R−→ qj .

Consider the following decision problem

L = {w#w | w ∈ {a, b, c}∗}.

So, the decision problem that given a string over the alphabet {a, b, c,#},
asks

“is the string made of two copies of the same string, separated by #?”

We can recognize this language with a TM with two tapes.

1. Copy the content of the first tape up to the symbol # to the second tape.

2. Compare the second string in the first tape with the string in the second
tape.

3. If they match, accept.

For example, consider the string w = ababc#ababc.

17

Marco Calautti Notes of Computability and Computational Complexity

So, the language accepted byM is L(M) = L, as the set of strings it accepts
coincides with L. We also made the machine reject every other string, so M
also decides the language.

Clearly, every language accepted by a single-tape TM is also accepted by a
multi-tape TM, as the former are a special case of the latter.

Surprisingly, we are going to prove also that every language accepted by a
multi-tape TM can also be accepted by a single-tape TM.

Theorem 2. Let M be multi-tape TM. Then, there exists a single-tape TM M ′

such that L(M) = L(M ′). Moreover, TM ′(n) ∈ O(TM (n)2).

Proof. For the proof, we show how to convert a multi-tape TM with k tapes
to a single-tape TM M ′. The idea is to store the content of all k tapes in the
single tape of M ′. The idea is shown in the picture below.

So, all the symbols in the first cell of each tape are stored one after the other
in the tape of M ′, all the symbols in the second cell of each tape are stored one

18

Marco Calautti Notes of Computability and Computational Complexity

after the other, and so on. Moreover, we let M ′ have some additional symbol.
In particular, a special symbol # to denote the start of the tape, and for each
symbol of the tape alphabet of M , M ′ has also a “dotted version”. This is used
to keep track of where the head on a tape of M is positioned.

Assume M is a TM with k tapes with input a string w = w1w2 · · ·wn. The
single-tape TM M ′ contains in its tape the string

ẇ1⊔̇⊔̇ · · · ⊔̇︸ ︷︷ ︸
k

w2 ⊔ ⊔ · · · ⊔︸ ︷︷ ︸
k

· · ·wn ⊔ ⊔ · · · ⊔︸ ︷︷ ︸
k

.

To simulate one step, M ′ will first move k cells at the time, searching for a
dotted symbol, denoting that the head on the first tape is on that symbol. If
M ′ changed the first cell of M and needs to go left, it writes k blanks on the
left (replacing #), and then writes # to the left of these blanks.

Once it finds it, it applies the step as dictated byM , by replacing the symbol,
and moving right/left of k cells, and placing a dot on the symbol. Then, it goes
back to the beginning of the tape (it looks for #). Then, it does the same for
the second tape, positioning its head on the second symbol, and then moving k
cells at the time. And so on, for all tapes.

Clearly, if M accepts w, also M ′ accepts, and vice versa. Thus, L(M) =
L(M ′).

Consider, for example, the transition:

qi

1:1→0,R
2:a→b,L
3:b→⊔,S−→ qj

Then, starting from the first symbol, M ′ will look for the symbol 1̇, by moving
k cells at the time.

It finds it, and applies the change. Moves right by k cells, places a dot, and
goes back to #. Then, moves to the second symbol, and looks for ȧ, and so on.
Once it is done, it moves to the state qj .

Let’s discuss now the time required by M ′. Consider an input string w and
assume up to a certain point, M has performed m steps. Then, the dotted
symbols in M ′ tapes are not farther than k ·m cells from the beginning of the
tape. So, to perform one step of M , M ′ needs to scan at most k ·m cells to the
right to find a dotted symbol, then k cells to update the head of the “virtual
tape” (in the worst case on the right). So overall, k · (m+1). Then, it needs to
go back to the beginning scanning k · (m+1) cells once more. Overall 2k(m+1)
steps for one tape of M . Thus, considering all k tapes, overall 2k2(m+1) steps
are needed. Thus, if M requires m steps, M ′ requires 2k2(m + 1) · m steps.
Thus, TM ′(n) ∈ O(TM (n)2).

01-TMs. So far, we always considered TMs that accept inputs strings over
arbitrary alphabets. However, as computer scientists, we are used to the fact
that we can actually encode data of any kind by using only two symbols, i.e.,
the binary alphabet {0, 1}. This intuition transfers naturally to TMs. That is,

19

Marco Calautti Notes of Computability and Computational Complexity

for every TM with some tape alphabet Γ, we can easily write a TM that encodes
strings over that alphabet in binary and performs the same computations.

For example, if Γ = {a, b, c, d,⊔}, we can encode each symbol in Γ (besides
⊔) with 2 bits, e.g.

< a >= 00, < b >= 01, < c >= 10, < d >= 11.

Thus, a string abb would be encoded as 000101.
With this spirit, we show how we can simulate a single-tape TM with input

tape Γ with a single-tape TM tape alphabet Γ′ containing only the symbols 0
and 1 (and the blank).

Theorem 3. Consider a TM M with tape alphabet Γ. Then, there exists a
TM M ′ with tape alphabet Γ′ = {0, 1,⊔} that simulates M . Moreover, TM ′ ∈
O(TM (n)).

Proof. Assume there are k symbols in Γ (excluding blank). We need ⌈log2(k)⌉
bits to encode each such symbol. We can then use a multi-track TM with tape
Γ′ = {0, 1,⊔}, with ⌈log2(k)⌉ tracks. The number of steps remain the same.

Moreover, since we can simulate a multi-track TM with a single-tape TM
without changing the input and tape alphabet, we conclude that we can simulate
M with a single-tape TM with alphabet Γ = {0, 1,⊔}. The time required follows
by the theorem on equivalence between multi-track and single-tape.

20

Marco Calautti Notes of Computability and Computational Complexity

4 Non-deterministic TMs and Exercises on TMs

In this lecture we consider one last extension of TMs. Probably one of the most
important, and the one that makes more evident how robust our computational
model is. We now consider non-deterministic TMs. Until now, our machines
performed “linear executions”. That is, when the machine is in some state and
reads a certain symbol from the tape, there is only a specific step that the
machine can perform (e.g., change the symbol, and move to the right).

This results in a computation, where starting from the initial ID, the machine
only moves to exactly one ID, and so on. So, once the input string is given, the
complete computation of the machine is already determined.

What if we let our machines, at each step, to consider multiple choices? This
way, if the machine is uncertain on what it has to do, to accept the language,
it can consider different potential steps at the same time. So, as far as at least
one of such choices leads to accepting the input string, the machine would have
accomplished its goal.

We call these machines non-deterministic TMs, and they only differ from
standard TMs in the way their transition function is defined.

Definition 7. A non-deterministic TM (NTM) M is a tuple

(Q,Σ,Γ, δ, q1, qaccept, qreject),

where every element is as in a standard TM. The only difference is that δ is not
a function from Q \ {qaccept, qreject}×Γ to Q×Γ×{R,L, S} anymore. Rather,
a function of the form

δ : Q \ {qaccept, qreject} × Γ → 2Q×Γ×{R,L,S} \ {∅}.

That is, for a given state q and symbol α, δ(q, α) is a non-empty set of triples
like (q′, β, R).

For example, δ(q1, a) = {(q2, b, R), (q3, c, L)} means that when the machine
is in state q1 and reads the symbol a, it can either move to state q2, change a
to b and move right, or move to state q3, change a to c and move to the left.

So, the computation of M is no more a simple sequence of IDs, but from a
certain ID, the machine can move to multiple IDs (like if it is considering all of
them in parallel). So, the computation is a tree!

21

Marco Calautti Notes of Computability and Computational Complexity

Definition 8. A non-deterministic TM M accepts an input string w if there
is a finite path in its computation tree, rooted on the initial ID, that ends in an
accepting ID. M rejects w if all paths rooted on the initial ID are finite and end
in a rejecting ID.

Note that when M accepts w, there might still be paths that lead to a
rejecting ID, or paths that never end. However, since the machine is “somehow”
considering all the paths in parallel, as far as it finds an accepting one, it does
not matter if others reject or loop.

Example 2. Let’s see a very simple example of a non-deterministic TM. Con-
sider the language

L = {w ∈ {0, 1}∗ | w contains the sequence 010}.

As we did for standard TM, we also need a notion of time required by a
NTM.

22

Marco Calautti Notes of Computability and Computational Complexity

Definition 9. The time required by a NTM M with inputs of length n, de-
noted TM (n), is the maximum number of steps that can occur in a path of any
computation tree of M , when considering input strings of length n. If there is
an input of length n for which M has an infinite path in its computation tree,
we say that TM (n) = ∞.

So, intuitively, the time required by a NTMM with inputs of length n is the
worst case number of steps it needs to perform, when considering all possible
outcomes (paths) in “parallel”.2

We can now define when a NTM accepts or decides a certain language, in a
similar way as we did for standard TMs.

Definition 10. Consider a NTM M . We use L(M) to denote the set of all
strings accepted by M . We say that M accepts a language L if L(M) = L.
Moreover, we say thatM decides a language L ifM accepts L, and TM (n) ̸= ∞,
for all n ≥ 0.

So, with so much power added, do deterministic (i.e., standard) TMs and
non-deterministic TMs still accept the same languages?

Theorem 4. Let M be a NTM. Then, there exists a 2-tape TM M ′ such that
L(M) = L(M ′). Moreover, if TM (n) ̸= ∞, TM ′(n) ∈ O(cTM (n)), for some
constant c > 0 that only depends on M .

Proof. The idea is as follows. Assume you are given the computation tree of
M with input w. How would you go about finding a path that ends in the
accepting/rejecting state? A depth first traversal is not enough, as remember
that some paths can be even infinite, and if we enter such a path, there is no
way to exit that path. We can use breadth-first: we visit the tree one level at
the time. Our machine M ′ does exactly this.

2Note that when for some input string w of length n, the NTM accepts w, the presence of
other infinite paths in the same computation tree makes the time required by M with inputs
of length n infinite. Indeed, one should interpret the expression TM (n) as a way for us to
understand, at a glance, on what the machine is doing with inputs of length n, and not as
a concrete notion of time spent, since non-deterministic machines are not something we can
actually build in the real world.

23

Marco Calautti Notes of Computability and Computational Complexity

M ′ has two tapes. In the first tape it first places the initial ID of M with
input w, ID0. Then, it copies ID0 to the second tape, and according to the
transition function of M , it copies ID0 at the end of the first tape (after ID0),
and then changes it to ID1. The machine does the same with ID2. After the
machine has written ID1 and ID2, it checks if the state qaccept appears in any
of them, in which case, M ′ accepts. Otherwise, M ′ then removes ID0 from the
two tapes, and positions the first head on ID1. It then copies ID1 to the second
tape, and writes ID3 and ID4 at the end of the first tape, and keeps doing this.
If at some point M ′ cannot construct new IDs anymore, and all the IDs in the
first tape are rejecting, then M ′ rejects.

Clearly, if there is a path in the computation tree ofM ending in an accepting
state, M ′ will find it and halt accepting. Thus, L(M) = L(M ′).

We point out that the construction of M ′ also shows that if there is no
accepting path, and all paths of M are rejecting, M ′ will reject, as it will
eventually not be able to construct any new IDs. Moreover, If there is no
accepting path, but M has at least one infinite path, then M ′ loops, as it will
keep constructing new IDs. So, M ′ not only accepts the same language as M ,
but if M decides a certain language, M ′ decides it as well.

24

Marco Calautti Notes of Computability and Computational Complexity

We now focus on the time required by M ′. Assume TM (n) ̸= ∞. For this,
let us focus on the computation tree of M with input some string of length n.
The depth of this tree must be at most TM (n), since by definition TM (n) is the
maximum number of steps we can have on all paths of all computation trees of
M with inputs of length n.

Let us consider now the number of children that an ID of a computation tree
of M can have. Regardless of the length of the input, the number of children
only depends on the transition function of M , i.e., how many triples δ outputs,
when given a state and a symbol as input. Assume the maximum number of
such triples is some number c > 0. Note that c only depends on the control of
M and not on the input we give to M .

So, in the worst case, the computation tree of M with inputs of length n
has depth equal to TM (n) and each node has c children. So, the total number
of IDs in the tree is the sum of all IDs that occur at each level of the tree. That
is:

TM (n)∑
i=0

ci ∈ O(cTM (n)).

Since, in the worst case, M ′ needs to visit all IDs in the computation tree
of M , it needs to roughly perform (modulo some constant factors) a number
of steps equal to the number of IDs in the computation tree of M , and thus
TM ′(n) ∈ O(cTM (n)), and the claim follows.

25

Marco Calautti Notes of Computability and Computational Complexity

4.1 Exercise 1

4.2 Exercise 2

In this exercise, for a string w, wR represents the reverse of w. For example, if
w = 0100, then wR = 0010.

26

Marco Calautti Notes of Computability and Computational Complexity

4.3 Exercise 3

27

Marco Calautti Notes of Computability and Computational Complexity

4.4 Exercise 4

28

Marco Calautti Notes of Computability and Computational Complexity

4.5 Exercise 5

29

Marco Calautti Notes of Computability and Computational Complexity

5 Universality, Limits of TMs and Computa-
tional Classes

We have seen in the previous lecture that TMs are actually quite powerful, in
that seemingly strong extensions to the computational model do not increase
the set of languages they accept.

Here we give one last evidence of the robustness of TMs as a computational
model, which should (together with the previous lecture) convince ourselves
that every problem that can be solved by any physically realizable model of
computation is also solvable by a TM.

Up until now, our TMs were a bit “limited” in their scope. That is, each
machine is dedicated to solve only one problem. But for TMs to be really placed
at the same level of modern computers, they need something more: they should
be programmable. That is, can we devise a general purpose TM U , that given as
input (some encoding of) another TM M and a string w, it is able to simulate
the execution ofM with input w. So, we can use U as a programmable machine,
that can run the code of other machines.

We call the machine U a universal TM.

Encoding of a TM. Since our machine U must take another machine M as
input, we first need to clarify how the machine M is encoded in the input tape
of U . So, we need an encoding of TMs.

Consider a TM M of the form

(Q,Σ,Γ, δ, q1, qaccept, qreject).

We want to encode M as a string < M > in binary. Remember that every TM
is equivalent to a TM whose tape alphabet is only Γ = {0, 1,⊔}. So, from now
on we will always assume our machines are over the binary alphabet, as they
can encode their input and other data in binary.

Assume Q = {q1, . . . , qn, qaccept, qreject}. We encode the state qi with a
sequence of i zeros. So q1 is encoded as 0, q3 as 000 and so on. The special
states qaccept and qreject with n+ 1 and n+ 2 zeroes.

Similarly, we need to represent the symbols of the alphabet Γ = {0, 1,⊔}
(which also contains Σ). We use a similar encoding.

We represent 0 with 0, 1 with 00 and the special blank symbol with 000.

Finally, we need to represent the transition function δ. For example,

δ(q1, 1) = (q3,⊔, R)

is represented as the string

0 1 00 1 000 1 000 1 00 11 · · ·

Here, for example we encode L with 0, R with 00 and S with 000. Each transition
is separated from the next with two 1s.

30

Marco Calautti Notes of Computability and Computational Complexity

TMs as numbers. So a TM can be represented by a binary string, which can
be seen as a natural number encoded in binary. So, every machine is essentially
a number! In principle however, not every number represents a machine. But,
we can adopt the convention that every number not corresponding to a valid
encoding of a TM, represents a dummy TM that rejects all strings, i.e., its lan-
guage is the empty set. For example, such a machine is the one with transitions

q1
α→α,S→ qreject, for each tape symbol α.

5.1 The Universal TM

Now that we know how to encode a TM in a binary string, we can show how
our universal TM U works.

Goal: Devise a TM U that with input< M > (i.e., the encoding of a TMM)
and a string w ∈ {0, 1}∗, U simulates the execution of M with input w, i.e., U
accepts/rejects/loops with input (< M >,w) wheneverM accepts/rejects/loops
with input w.

Structure of U . Our universal TM U is a TM with 4 tapes.

1. Tape 1: contains the encoding of M and the string w, e.g., stored like
< M > 111w, where < M > is the encoding of M as described before,
then 111 are used as separators, and w is the input string to w. Note that
w is stored “as is”.

2. Tape 2: This is used to simulate M ’s tape. So, at the beginning, it must
contain w. However, since U must simulate M ’s execution on input w, it
needs first to convert the symbols w to the encoding used for the symbols
of M , so that U can correctly use the transitions encoded in < M >. So,
for example, if

w = 0101,

When U starts, it writes the string < w >= 0 1 00 1 0 1 00 in the second
tape., and positions the second tape’s head to the beginning.

3. Tape 3: U writes the current state of M . At the beginning it is its start
state q1. Also this must be stored properly encoded. Remember that the
encoding of the start state is a plain 0, i.e., < q1 >= 0.

4. Tape 4: This is used by U to store temporary data, we will see in a
moment.

31

Marco Calautti Notes of Computability and Computational Complexity

How U works. After U initializes its tapes as discussed above, it does the
following:

1. It first scans tape 1, and checks if < M > actually encodes a valid TM.
If this is only garbage, U immediately moves to its rejecting state. Note
this is correct, because we assumed that invalid encodings represent TMs
that reject all strings. So regardless of the content of w, M rejects w, and
so does U . Otherwise,

2. U scans tape 1, searching for a transition encoded like so:

0i 1 0j 1 0k 1 0l 1 0m.

where 0i encodes the state stored on tape 3, 0j encodes the symbol that
is pointed by U ’s tape 2 head. When it finds it, it must simulate the
transition.

3. (a) U clears the string 0i on tape 3 with blanks, and writes the new state
0k.

(b) U replaces the current symbol 0j with the new symbol 0l. If 0l is
shorter or longer than 0j , then before writing 0l, U copies the content
of tape 2 to the right of where 0j resides to the scratch tape. Then,
writes 0l, and the copies it back to tape 2.

(c) U moves the head in tape 2 to the position of the next 1 to the
right/left, if 0m encodes R or L respectively. If it encodes S, it leaves
the head there. If moving U’s second tape head to the right (resp.,
left), the head goes over ⊔, then U writes 1 there and then writes
000 from left to right (resp., from right to left) in the second tape,
to represent the fact that the head of M is on a blank.

4. If, after step 3, U has written the encoding of M ’s state qaccept (resp.,
qreject) on tape 3, it moves to its accepting (resp., rejecting) state.

32

Marco Calautti Notes of Computability and Computational Complexity

It should be clear, by the construction, that U accepts/rejects/loops its input
< M > 111w iff the TM M accepts/rejects/loops w.

Church-Turing Thesis. With the above construction, we should be now
fairly convinced that the TM is a very robust computational model, as not
only all the extensions we tried did not increase its expressive power, but it is
also powerful enough to behave like a general purpose computer. During the
years, TMs have been shown to be powerful enough to simulate many other
computational models, including modern computers. All such observations led
two of the fathers of modern computer science, i.e., Alan Turing and Alonzo
Church, to conjecture that there actually is no more powerful computational
model than TMs. That is,

Any problem that can be solved by some physically realizable model of
computation can also be solved by a Turing Machine.

The above claim is known as the Church-Turing Thesis.

5.2 Limits of TMs

Despite the great computational power that TMs enjoy, they also have their
limits. In fact, we are going to prove that there exist a language for which no
TM exists that accepts it.

This, together with the fact that we believe no more powerful computational
model exist, implies that there are problems that are inherently impossible to
solve, no matter which kind of computer/machine etc. you are willing to use.

33

Marco Calautti Notes of Computability and Computational Complexity

Diagonal language. Consider all possible binary strings w1, w2, w3, Re-
call that each string wi represents a TM Mi (dummy if bad encoding). We now
consider the language

Ld = {wi |Mi does not accept wi}.

That is, Ld contains all binary strings that are not accepted by the TM they
represent. By “not accepted”, then we mean that either Mi rejects wi or even
that Mi loops with input wi.

We prove the following.

Theorem 5. There is no TM M such that L(M) = Ld.

Proof. Imagine we write down an infinite table, were each row is associated to a
TM, and each column to a binary string. We write a 1 in the cell corresponding
to Mi and wj if Mi accepts wj , and a 0 otherwise.

So, for example M1 accepts w2, but does not accept w1.
Note that the row of some TMMi essentially represents the language of Mi,

e.g. for M1, the row
[0110 · · ·]

indicates which strings belong to the language of M1, L(M1). The row of Mi is
called characteristic vector of Mi.

Consider now the diagonal of the matrix

D = [0110 · · ·].

If we flip the bits in D, and obtain

D̄ = [1001 · · ·],

we see that D̄ is actually the characteristic vector of the TM that accepts Ld,
as the strings with a 1 in D̄ are the strings not accepted by the machine they
represent. Hence the name diagonal language.

However, there is no row in the table equal to D̄. Indeed, assume, towards
a contradiction, that some row of the matrix coincides with D̄. For example,

34

Marco Calautti Notes of Computability and Computational Complexity

say this is the i-th row. Let α be the i-th symbol in this row. This is the same
to say that the i-th element of the diagonal of the matrix contains α. Then,
this row cannot be D̄, because the i-th element in D̄ is the opposite of the i-th
element of the diagonal, by construction of D̄, and we obtain a contadiction.
So, no row of the matrix coincides with D̄.

Then, if there is no row (i.e., TM) in the matrix which coincides with D̄,
i.e., the characteristic vector of Ld, then there is no TM whose language is Ld

(recall that in the matrix we list all TMs).

5.3 Computational Classes

So, the diagonal language Ld is an example of a language for which there is no
TM that is even just able to accept it. But are there only languages that are
not accepted and languages that can be decided or there is more?

In order to properly classify languages, we first need to define some important
classes of languages. Here we focus only on languages over the binary alphabet
0, 1, as we have already seen that the alphabet is not actually important, as we
can always find an encoding for the strings in binary.

The first class, denoted RE, is the so-called class of recursively enumerable
languages, also called Turing-recognizable, or semi-decidable.

RE = {L | there is a TM M that accepts L}.

So, RE contains all that languages that are accepted by some TM. Recall, the
fact that L is accepted by M does not imply that M rejects all other strings, it
may very well not halt at all.

The other class, denoted R, is the class of recursive languages, also called
decidable. R collects languages whose corresponding decision problem can be
effectivelly solved.

R = {L | there is a TM M that decides L}.

So, a language L is in R if we can devise a TM M that not only accepts every
string in L, but if given a string not in L, M always halts in the rejecting state.

Such kind of machines are much closer to the notion of algorithm we are used
to, i.e., a procedure that is able to completely solve a problem because given an
input, if the answer is “yes”, the algorithm halts answering “yes”, and if the
answer is “no”, the algorithm also halts answering “no”.

Ideally, if we are trying to solve a problem, we would like the problem to
be decidable, as this means we can provide an algorithm that always gives the
right answer in a finite amount of time.

Properties. Clearly, by definition, if there is a TMM that decides a language
L, then M also accepts L. Hence, R ⊆ RE.

35

Marco Calautti Notes of Computability and Computational Complexity

We have already shown that the diagonal language has no TM that accepts
it. So, we know that Ld lies outside of the larger circle.

And we also know that there are definitely languages inside the inner circle.
For example the language

L01 = {0n1n | n ≥ 0}.

We have seen a TM that decides L01 in previous lectures.
Every problem that is not in R, i.e., it is not decidable, is called undecidable.

These are all the languages L for which either there is no TM that accepts L
at all, i.e., L ̸∈ RE, or there is a TM that accepts L but it is not guaranteed to
halt with all other strings not in L, i.e. L lies in the ring (L ∈ RE \ R).

Remark. Often, distinguishing whether a language is either in R or outside
of R is much more important than distinguishing between being in RE or not in
RE, since in the latter case, whatever is the outcome, we cannot conclude if the
problem represented by such a language is completely solvable, as there might
not be a machine that always halts with the right answer.

So, usually, given a language L, the main question we want to answer is:

Does L actually lie in R or outside of it?

To answer these kind of questions, we are going to prove some useful results.

5.4 Properties of recursive and recursively enumerable
languages

The first property we show is about complements of recursive languages.

Definition 11. Consider a language L. The complement of L is the language
L̄ that contains all strings but the ones in L.

Essentially, if L describes a decision problem, where the answer is “yes”
when the input is in L, and “no” otherwise, L̄ is the problem that flips the
answer, i.e., the answer is “yes” if the input is not in L, and “no” otherwise.

For example, “Does a given vector of integers v contain the number 0?”. Its
complement is “Is it the case that the given vector of integer v does not contain
the number 0?”.

36

Marco Calautti Notes of Computability and Computational Complexity

Theorem 6. If L ∈ R, then L̄ ∈ R.

Proof. The intuition is that if L ∈ R it means that the machine M accepting
L always halts, either in an accepting or a rejecting state. So, consider the TM
M ′ where we just swap qaccept with qreject in M . If w ∈ L, M accepts w, and
thus M rejects w. If w ̸∈ L, M rejects w (because M decides L), and thus M ′

accepts w. Thus, M ′ decides L̄.

Note that the same does not necessarily hold for RE, i.e., L ∈ RE does not
imply that L̄ ∈ RE.3

What about languages in RE?

Theorem 7. If L ∈ RE and L̄ ∈ RE, then L ∈ R (and thus L̄ ∈ R).

Proof. If L ∈ RE and L̄ ∈ RE it means that we have two TMs, M and M̄ .
M halts in an accepting state if its input w belongs to L, and M̄ halts in an
accepting state if its input w does not belong to L.

So, given a string w, we can decide whether w ∈ L or not by running M and
M̄ in parallel with input w.4 While executing M and M̄ , if M accepts, then
w ∈ L, and M ′ will accept. If M̄ accepts, then w ̸∈ L, and M ′ will reject.

3If this was the case, then RE = R, as a consequence of the fact that L ∈ RE and L̄ ∈ RE
implies L ∈ R (see next theorem). But, we are going to see that there are languages in RE
but not in R.

4This can be achieved by executing M and M̄ one step at the time, i.e. first execute one
step for M , then one step for M̄ , and so on.

37

Marco Calautti Notes of Computability and Computational Complexity

6 Universal Language and the Halting Problem

In the previous lecture we have seen an example of a language that is not in RE,
i.e., the diagonal language Ld. We also introduced some key results regarding
languages and their membership in R and RE that will help us in our journey
in classifying even more languages.

We now show an important problem (language) that is RE but not in R.
Recall that we have seen that TMs can be encoded via binary strings.

Definition 12. The universal language is the language

Lu = {(M,w) |M accepts w}.

Formally, (M,w) is not a binary string, so Lu is made of binary strings that
encode (M,w), e.g. < M > 111w as we have seen in the previous lecture.
From now on, whenever we define languages, we always assume its elements are
properly encoded in binary. The language Lu essentially represents the decision
problem asking the following

Given the code of a TM M and a string w, does M accept w?

We first show that Lu is in RE.

Theorem 8. Lu ∈ RE.

Proof. To show the claim, we need to show that there is a TM M ′ such that
L(M ′) = Lu. The latter means that if (M,w) ∈ Lu, then M ′ accepts (M,w)
and if (M,w) ̸∈ Lu, then M ′ does not accept (M,w) (which can mean either
that M ′ rejects, or loops).

We actually already know such a machine M ′. We have seen that the com-
putation of a TM M with input w can be simulated by the Universal TM U . In
fact, with input an (encoded) pair (M,w), U simulates M , and if M accepts w,
then so does U . If M does not accept w, U does not accept. So, L(U) = Lu.

Remark. One might wonder why U is not also able to decide Lu, i.e., given
(M,w), ifM accepts w, U accepts (M,w), and ifM does not accept w, U rejects
(M,w). However, remember that M not accepting w can mean two things:

1. Either M halts in a rejecting state, or

2. M never halts.

In the first case, U , with input (M,w), also halts and rejects, however in the
second case, to actually decide Lu, U should also halt and reject, which is not
the case, as it simulatesM , and it does exactly whatM does, i.e., never halt.

Note that the fact that the machine we have shown only accepts Lu but does
not decide Lu, does not mean that there is no more clever TM that does the
job. We now show that indeed, such a machine does not exist.

38

Marco Calautti Notes of Computability and Computational Complexity

Theorem 9. Lu ̸∈ R.

Proof. The proof is by contradiction. Assume, towards a contradiction that

Lu ∈ R.

Thus, by Theorem 6
L̄u ∈ R,

where
L̄u = {(M,w) |M does not accept w}.

The fact that L̄u ∈ R means that there is a TM M̄ that accepts all strings in
L̄u and rejects all other strings. However, we can show that M̄ can be used to
build a TM M ′ that accepts (actually even decide) the diagonal language Ld.

Recall that
Ld = {w |Mw does not accept w}.

The idea is that Ld is somehow a special case of L̄u, where the input machine
and the input string are not arbitrary, but they are the same.

1. M ′ takes as input a string w in its input tape. It then writes 111 after that
and then copies w after that, and moves the head back to the beginning.

2. M ′ transition function contains a copy of M̄ transition function, and after
step 1 above, it moves to the start state of M̄ .

To prove that M ′ decides Ld, we need to prove two claims: if w ∈ Ld, M
′

accepts w, and if w ̸∈ Ld, then M
′ rejects w.

1. Assume w ∈ Ld, i.e., w encodes a TM Mw such that Mw does not accept
w. This means that M̄ , with input w111w accepts, as it decides the
complement of Lu.

2. Assume w ̸∈ Ld, i.e., w encodes a TM Mw such that Mw accepts w. This
means that M̄ , with input w111w rejects.

Thus, M ′ decides Ld, which means that Ld ∈ R. However, we know that
Ld ̸∈ RE, let alone R. This is a contradiction, and thus Lu ̸∈ R.

39

Marco Calautti Notes of Computability and Computational Complexity

The fact that Lu ∈ RE and Lu ̸∈ R also tells us something about the
complement of Lu, i.e.,

L̄u = {(M,w) |M does not accept w}.

We conclude that L̄u is not in RE, because if it was, Lu ∈ RE together with
L̄u ∈ RE implies that Lu ∈ R (thanks to Theorem 7). However, we have just
shown that Lu ̸∈ R. Thus, L̄u ̸∈ RE.

So, the overall picture of the languages we have seen is:

6.1 The Halting problem

Let us see another example of a language that is in RE but not in R. The
language, or better, the decision problem it represents, is known as the Halting
problem.

HALT = {(M,w) |M halts with input w}.
That is, it represents the decision problem asking the following question

Given the encoding of a TM M and a string w, does M ever halt its
computation when given w as input?

Remark. Note that this is not the same as the Universal language Lu, as here
we are not asking whetherM accepts w, rather we are interested ifM ever halts
its computation with input w, regardless if M accepts or rejects w.

This is a very important decision problem, both for historical and for tech-
nical reasons.

This is one of the first problems that have been shown to be undecidable, and
the first proved so by Alan Turing in 1936. Moreover, many relevant problems
in computer science can be seen as some variant of the halting problem.

For example, an antivirus trying to understand if a program will ever execute
a malicious instruction can be seen as a variant of HALT.

Another example is in Machine Learning: given a small5 sample of a dataset

5Of size independent of the size of the whole dataset.

40

Marco Calautti Notes of Computability and Computational Complexity

where each entry in the dataset has a label, decide whether we can actually train
a model (i.e., build an algorithm) that given an entry (from the whole dataset),
provides the right label, with high probability.

Theorem 10. HALT ∈ RE but HALT ̸∈ R.

Proof. Once again, to prove that HALT ∈ RE, we need to prove that a TM exists
accepting HALT. For this, we rely again on the Universal TM U , and build a
TM Mh that accepts HALT, by using U as a subroutine. The construction is
similar to the one given for the universal language. In fact, since U accepts or
rejects whenever the input M accepts or rejects, it is enough to change U in
such a way that even if M rejects w, U moves anyway to an accepting state.

Thus, to prove that HALT ∈ RE, we need to prove that Mh accepts HALT,
i.e.,

1. If (M,w) ∈ HALT, then Mh accepts (M,w);

2. If (M,w) ̸∈ HALT, then Mh does not accept (M,w) (i.e., Mh rejects or
loops).

If (M,w) ∈ HALT, then U with input (M,w) either accepts of rejects, thus,
in any case, Mh accepts. If (M,w) ̸∈ HALT, U does not halt, and thus also Mh

does not halt, hence Mh does not accept (M,w).

We now prove that HALT ̸∈ R. Assume, towards a contradiction, that
HALT ∈ R. So, there is a TM Mh that decides HALT, i.e., if M halts with
input w, Mh accepts, but also if M does not halt with w, Mh rejects. We
show that we can use Mh to build another TM Mu that decides the universal
language, obtaining a contradiction.

The machine Mu does the following, with input (M,w).

1. It first executes Mh with input (M,w)).

2. If Mh rejects, then Mu rejects.

3. If Mh accepts, then Mu executes the universal machine U with input
(M,w).

4. If U accepts, then Mu accepts.

41

Marco Calautti Notes of Computability and Computational Complexity

5. If U rejects, then Mu, rejects.

To show that Mu decides Lu we need to prove two things:

1. If (M,w) ∈ Lu, then Mu accepts (M,w);

2. If (M,w) ̸∈ Lu, then Mu rejects (M,w).

If (M,w) ∈ Lu, it means that M accepts w. Thus, M halts in the accepting
state. This means that Mh with input (M,w) will conclude that M halts with
input w. Thus, Mu will execute U with input (M,w), which will accept, and
thus Mu accepts as needed.

If (M,w) ̸∈ Lu, it means that M does not accept w. This can mean two
things: M rejects w, or M loops with input w. If M loops, then Mh rejects,
and so does Mu as needed. If instead M rejects w, Mh accepts, ans thus U
is executed with input (M,w), which makes U rejects, and thus Mu rejects as
needed.

Thus, Mu decides Lu, and we obtain a contradiction.

As we did for the universal language, knowing that HALT ∈ RE, but
HALT ̸∈ R, implies that its complement

HALT = {(M,w) |M does not halt with input w}

is not in RE. Thus, this is the overall picture.

42

Marco Calautti Notes of Computability and Computational Complexity

Remark. We remark, once again, that the difficulty of HALT (as well as Lu

and Ld), i.e., of not having a TM that decides them, lies in the fact that we
cannot find a TM that for every input (M,w), it provides the right answer, i.e.,
does M halt on w or not? But, of course there can be a TM that, for some
inputs is able to give the right answer, but for some other it will necessarily
loop.

A variation of HALT. We now focus on one last language, which can be
seen as a special case of the Halting problem.

HALT-ϵ = {M |M halts with input the empty string ϵ}.

The above language describes the following decision problem:

Given the encoding of a TM M (and nothing else), does M ever halt its
computation when executed with an empty tape?

We prove that HALT-ϵ is in RE but not in R.

Theorem 11. HALT-ϵ ∈ RE, but HALT-ϵ ̸∈ R.

Proof. As usual, to prove that a language is in RE, we need to exhibit a TM
that accepts all strings in the language, and does not accept all others. Our
such a TM, dubbed Mhϵ, is almost identical to the one used for HALT. The
only difference is that we need to accept HALT-ϵ which takes as input only a
TM, and needs to verify halting for the empty string as input:

Now, if M ∈ HALT-ϵ, then it means that M halts with input the empty
string. Thus, U will either accept or reject, and in both cases, Mhϵ accepts
M . If M ̸∈ HALT-ϵ, then it means that M does not halt with input th empty
string. Thus, U will not halt as well, and thus Mhϵ does not accept M .

We now prove that HALT-ϵ ̸∈ R. Again assume, towards a contradiction,
that HALT-ϵ ∈ R, and let Mhϵ be a TM that decides HALT-ϵ. We now show
how to build a TM that usesMhϵ as a subroutine to decide HALT. We dub such
a machine Mh, and report it below:

43

Marco Calautti Notes of Computability and Computational Complexity

Here, we pick M and w and construct a TM M ′ that contains some additional
transition rules that, before starting M ′ execution, first erase the content of its
tape (so, M ′ erases its input), and replace it with the string w. So, regardless
of its input (even the empty string), M ′ will execute like if its input is w.

To prove that MH above decides HALT, we need to prove two things, as
usual:

1. If (M,w) ∈ HALT, then Mh accepts (M,w);

2. If (M,w) ̸∈ HALT, then Mh rejects (M,w).

If (M,w) ∈ HALT, it means that M halts with input w, which means that M ′,
even when executed with the empty string, halts. So, Mhϵ accepts, and Mh

accepts overall.
If (M,w) ̸∈ HALT, it means that M does not halt with input w, which,

by construction of M ′, means that M ′ does not halt (even with input the
empty string, since it anyways replaces it with w). So, Mhϵ rejects, and so
does Mh. Thus, Mh decides HALT, i.e., HALT ∈ R, which is a contradiction.
So, HALT-ϵ ̸∈ R.

Also here, we can conclude that the complement of HALT-ϵ,

HALT-ϵ = {M |M does not halt with input the empty string ϵ},

is not in RE.

44

Marco Calautti Notes of Computability and Computational Complexity

7 Reductions and the Le, Lne languages
In the previous lectures, we have seen a number of undecidable languages. More-
over, most of our undecidability results have relied on dedicated proofs that we
came up with from scratch. However, there is something in common between
the above proofs: they somehow exploit the fact that some other language is
known to be undecidable.

In particular, the story always goes like this:

1. We want to show that a language L is undecidable.

2. We assume, by contradiction, that a TM M deciding L exists.

3. We show that we can construct a TM M ′, which uses M , that can decide
another language L′ which we know is undecidable.

4. We obtain a contradiction.

What the above proof is actually doing is known as a reduction from the
language L′ to the language L. That is, one can decide L′ if she is able to
decide L.

Example 3. As a more concrete example of a reduction between two languages
(decision problems), consider the problem, where given the map of a city and
two cities, we must decide whether two cities are connected in the map. You
can reduce this problem to the REACHABILITY problem on directed graphs.
Indeed, if you can decide the REACHABILITY problem, the city-map problem
can be decided as well. How?

First, convert the map of the city into a graph (e.g., cities become nodes,
and roads become edges), and then convert the source and target city to the
corresponding nodes in the graph. Finally, run the reachability algorithm on
the obtained graph and the two nodes. The answer given by the algorithm is
precisely the answer to the city-map problem.

As you can see, we did not need to know precisely how an algorithm for
the REACHABILITY problem works. It was enough to convert instances of
the city-map problem to instances of the REACHABILITY problem in ”the
right way” (i.e., we must map yes-instances to yes-instances, and no-instances
to no-instances).

There exist many kinds of reductions. The onde described in the city-map
example is called a many-one reduction.

Intuitively, a many-one reduction from a language L1 to a language L2, is
an algorithm that converts yes-instances of L1 to yes-instances of L2, and no-
instances of L1 to no-instances of L2. So, to decide whether a given string w
belongs to L1 or not, one can first convert w to another string w′ using the
reduction, and then decide whether w′ belongs to L2 or not.

The picture below shows the behaviour of a many-one reduction.

45

Marco Calautti Notes of Computability and Computational Complexity

We first formalize the kind of algorithms we use for converting instances
from one language to another.

Definition 13 (Transducer). A transducer is a 3-tapes TM T , enjoying the
following properties:

1. Tape 1 is the input tape, which is read only (i.e., T cannot write symbols
to it);

2. Tape 2 is the work tape, which is read/write (i.e., T can both read and
write symbols from/to it);

3. Tape 3 is the output tape, which is write only (i.e., T can only write
symbols to it).

4. T always accepts its input.

For a string w and a transducer T , we use T (w) to denote the portion of the
output tape on which T has written to, after T accepts w.

Note that since our reduction must just convert strings to strings, it does
not make much sense for the machine to reject its input, and more importantly,
we want the machine to always halt, as we want an effective way of converting
any instance to another instance.

Moreover, we use different tapes, than a standard single tape TM, because
we would like to clearly separate the input and output from the amount of data
the machine actually uses to perform the conversion. This will come up useful
later on in the course, when we will be concerned on the space resources required
by our reductions.6

Definition 14 (Reduction). A (many-one) reduction from a language L1 ⊆
{0, 1}∗ to a language L2 ⊆ {0, 1}∗ is a transducer T such that, for each w ∈
{0, 1}∗:

1. If w ∈ L1 then T (w) ∈ L2, and

2. if w ̸∈ L1 then T (w) ̸∈ L2.

6When measuring the memory used by the TM (or any algorithm), it does not make sense
to also count the space occupied by the input and the output.

46

Marco Calautti Notes of Computability and Computational Complexity

We write L1 ≤ L2 to say that L1 reduces to L2, i.e., there is a reduction from
L1 to L2.

We can now formally prove that our definition of reduction allows us to
transfer different properties between languages.

Theorem 12. If L1 ≤ L2, then the following hold:

1. If L1 ̸∈ R, then L2 ̸∈ R.

2. If L1 ̸∈ RE, then L2 ̸∈ RE.

Proof. Assume that L1 ≤ L2, i.e., there exists a reduction T from L1 to L2.

(Item 1) Assume L1 ̸∈ R, but, towards a contradiction, assume that L2 ∈ R.
This means that there exists a TM M that decides L2, i.e., for each string
w ∈ {0, 1}∗, if w ∈ L2, then M accepts w, and if w ̸∈ L2, then M rejects w.
Then, consider the TM M ′ below:

We show now that M ′ decides L1, i.e., if w ∈ L1, then M
′ accepts w, and if

w ̸∈ L1, then M
′ rejects w. Assume that w ∈ L1. Since T is a reduction from

L1 to L2, T (w), i.e., the output of T with input w, is a new string w′ such that
w′ ∈ L2. Thus, since M decides L2, it follows that when M ′ executes M with
input w′, it will accept. Assume that w ̸∈ L1. Since T is a reduction from L1

to L2, T (w), i.e., the output of T with input w, is a new string w′ such that
w′ ̸∈ L2. Thus, since M decides L2, it follows that when M ′ executes M with
input w′, it will reject. Hence, M ′ decides L1.

However, we assumed that L1 ̸∈ R, i.e., L1 is not decidable, obtaining a
contradiction. Thus, M cannot exist, which implies that L2 ̸∈ R.

(Item 2) Assume L1 ̸∈ RE, but, towards a contradiction, assume that L2 ∈
RE. This means that there exists a TM M that accepts L2, i.e., for each string
w ∈ {0, 1}∗, if w ∈ L2, then M accepts w, and if w ̸∈ L2, then M does not
accept w. Then, consider the TM M ′ below:

47

Marco Calautti Notes of Computability and Computational Complexity

We show now that M ′ accepts L1, i.e., if w ∈ L1, then M
′ accepts w, and if

w ̸∈ L1, then M does not accept w.
Assume that w ∈ L1. Since T is a reduction from L1 to L2, T (w), i.e., the

output of T with input w, is a new string w′ such that w′ ∈ L2. Thus, since M
accepts L2, it follows that when M

′ executes M with input w′, it will accept.
Assume that w ̸∈ L1. Since T is a reduction from L1 to L2, T (w), i.e., the

output of T with input w, is a new string w′ such that w′ ̸∈ L2. Thus, since
M accepts L2, it follows that when M

′ executes M with input w′, M ′ will not
accept w (i.e., it either loops or rejects). Hence, M ′ accepts L1.

However, we assumed that L1 ̸∈ RE, i.e., there is no TM that accepts L1,
obtaining a contradiction. Thus, M cannot exist and L2 ̸∈ RE.

The above results allow us to transfer “negative” knowledge from the source
language L1 to the target language L2. Nonetheless, the existence of a reduction
also allows us to transfer “positive” knowledge from the target language to the
source. In fact, the following is a corollary of the theorem above

Corollary 1. If L1 ≤ L2, then the following hold:

1. If L2 ∈ R, then L1 ∈ R.

2. If L2 ∈ RE, then L1 ∈ RE.

Proof. One can see the two implications of Theorem 12 in the opposite way.
That is, when we have an implication of the form A implies B, this is really
just the same thing as saying that “not B” implies “not A”. Thus, saying that
L1 ̸∈ R implies L2 ̸∈ R is equivalent to say that L2 ∈ R implies L1 ∈ R. The
same applies to the second implication about RE.

With Theorem 12 and Corollary 1 at hand, we now have a set of power-
ful formal tools for placing new problems in the right class. Let us see some
examples.

Remark. Although we defined our notion of reduction very formally, via trans-
ducers, it is usually very difficult and convoluted to design reductions in this
form. We should be confident enough at this point that TMs are as power-
ful as many other computational models, including modern computers. So, for
this reason, when we find it useful, rather than describing our reductions as
transducers, we will describe their behaviour by means of algorithms written in
pseudo code. This is similar in spirit to what most of you did when studying
algorithms in the Algorithms and Data Structures course.

This will keep our discussion light, but still allow us to provide formal claims
about languages.

7.1 Emptiness of a TM’s language

Assume you are given the code of a procedure. One important question that we
might want to answer about this procedure is whether the procedure is “trivial”,

48

Marco Calautti Notes of Computability and Computational Complexity

i.e., it does not accept any string. The above question can be seen like asking
whether the procedure does not have any purpose at all.

Definition 15. The language Le ⊆ {0, 1}∗ is the set of all encodings of TMs
M that accept no string. That is,

Le = {< M >| L(M) = ∅}.

Recall that we encode TMs as binary strings, so we focus on the alphabet
{0, 1}.

Another interesting decision problem is the complement of Le, i.e., deciding
whether a given TM actually accepts something.

Definition 16. The language Lne ⊆ {0, 1}∗ is the set of all encodings of TMs
M that accept at least one string. That is,

Lne = L̄e = {< M >| L(M) ̸= ∅}.

The language Lne. Let us start by studying Lne.

Theorem 13. Lne ∈ RE.

Proof. To show that Lne is recursively-enumerable, we need to show that there
exists a TM Mne that accepts Lne, i.e., L(Mne) = Lne. As we know that all
variations of TMs we have seen until now are equally powerful, we can devise
any TM for this purpose, even a non-deterministic one. Since it is easier to
devise a machine accepting Lne by using non-determinism, we construct an
NTM accepting Lne.

Our Mne must take as input the encoding of a TM M , and accept it, if
L(M) ̸= ∅. The idea would be that Mne iterates over all strings w, and for
each such a string, simulates the computation of M over w, searching for the
one accepted by M (if it exists). However, this approach would not work, since
while searching for this string, we might simulate M over a string that makes
M loop, and thus we would never be able to move on to the next string.

The trick is to letMne be a NTM that simply guesses a string w, and verifies
that M accepts it by simulating the computation of M with input w (this can
be done via the universal TM U). If such a string exists, there will be a path
in the computation tree of Mne that ends in an accepting ID.

The idea is shown in the picture below:

49

Marco Calautti Notes of Computability and Computational Complexity

So, we now can “partially solve” the decision problem encoded by Lne. But,
can we actually solve it? Is Lne decidable? We show this is not the case, via a
reduction from a known, undecidable language.

Theorem 14. Lne ̸∈ R.

Proof. We prove the claim by showing that the universal language Lu reduces
to Lne, i.e., Lu ≤ Lne. Since we know that Lu ̸∈ R, by Theorem 12 (Item 1),
we conclude that Lne ̸∈ R.

Before starting. The goal of our reduction is to convert a string w into another
string w′ in such a way that, if w belongs to Lu then w′ belongs to Lne, and
if w does not belong to Lu, then w

′ does not belong to Lne. When devising a
reduction, we need first to understand how strings of the two languages we are
considering look like. Regarding Lu, strings in the language are binary-encoded
pairs of the form (M,w), where M is a TM and w a binary string such that M
accepts w. If the string is not in the language, it can be either a wrong encoding
of a pair (M,w) or a valid encoding but M does not accept w. In principle, our
reduction must be able to deal with all three cases above, and thus if the input
string is an invalid encoding of a pair (M,w) (which means it is a no-instance
for Lu), should return a no-instance for Lne.

However, note that this part is the least interesting of the reduction, and
usually quite trivial to accomplish: just check that the input string is invalid,
and if this is the case, then output an (arbitrary) no-instance for the destination
language.

So, to keep our reductions simple and readable, we assume we will not de-
scribe how our reductions deal with invalid encodings, as we assume by default
that they will always first check whether the encoding is invalid, and in which
case, return some default no-instance for the target language. In this way, we
can focus only on the real “juice” of the reduction, i.e., mapping yes-instances
to yes-instances and valid no-instances to valid no-instances.

We now proceed with devising our reduction. We need to devise a procedure
T that given an encoding of a pair (M,w) outputs the encoding of a TM M ′.

Moreover, T must be such that M accepts w implies that L(M ′) ̸= ∅, and
M does not accept w implies that L(M ′) = ∅.

Our reduction T , given (M,w) constructs the following TM M ′:

50

Marco Calautti Notes of Computability and Computational Complexity

Essentially, the TM M ′ that our reduction constructs completely ignores its
input, by replacing it with w, and then executes the control ofM . IfM ′ reaches
an accepting state, it means that M accepts w. Note that here we are not using
the universal TM to simulate M with input w. We could have done that, but it
would make M ′ look unnecessarily complex. Indeed, the control of M ′ is quite
simple; assume w = w1 · · ·wn.

M ′ first erases its input, then fills its input tape with the string w =
w1 · · ·wn, and then moves to the initial state ofM (i.e., M ′ contains the control
of M in its transition function). Let us see why T is a reduction. Consider a
pair (M,w) as input to T .

Assume M accepts w, then the TM M ′ that T constructs will always reach
an accepting state, no matter the input string, i.e., M ′ accepts all strings, and
thus L(M ′) ̸= ∅.

Assume M does not accept w, then the TM M ′ that T constructs will never
accept, no matter its input string, i.e., M ′ does not accept any input string, and
thus L(M ′) = ∅.

So, T is a reduction from Lu to Lne, and since Lu ̸∈ R, we conclude that
Lne ̸∈ R.

The language Le. Now that we have a precise understanding of Lne, we can
place Le in the right classes, very easily.

Theorem 15. Le ̸∈ RE.

Proof. Towards a contradiction, assume that Le ∈ RE. By Theorem 13, we
know that Lne ∈ RE. So, both are in RE. Since Le and Lne are the complements
of each other, Theorem 7 tells us that since they are both in RE they both also
must be in R. However, we have seen in Theorem 14 that Lne ̸∈ R, obtaining a
contradiction.

Remark. It is important to note that languages and their complements do not
necessarily behave in the same way. That is, if a language is in RE, there is
no guarantee that its complement is in RE. The reason for this is that the fact
that a language L ∈ RE actually means that we have a TM M that accepts all
strings in L, butM could either reject or loop with a string not in the language.
Thus, we cannot simply take M , invert its accepting state with the rejecting
state, and hope that it will accept all strings in L̄. This is because M might

51

Marco Calautti Notes of Computability and Computational Complexity

loop for some given string not in L. Thus, M ′ might loop when given a string
in L̄!

Only for decidable languages, there is a kind of symmetry with their comple-
ment, as flipping the accepting/rejecting states indeed has the expected effect.

Below we report the final picture of all the languages we have studied so far.

52

Marco Calautti Notes of Computability and Computational Complexity

8 More on Reductions

In this lecture, we further explore the technique of reductions, by showing more
problems are undecidable. Until now, our undecidable languages were all defined
in terms of TMs, i.e., asking questions about TMs. We will see now that indeed
there are more undecidable languages that do not talk about TMs at all! Indeed,
we are now going to show that there are some puzzles that are impossible to
solve in general. We first focus on the so called Post Correspondence Problem.

8.1 Post Correspondence Problem (PCP)

This is an undecidable problem that was introduced by Emil Post in 1946.
Let us first state the problem in natural language, and then provide a formal
definition as a language of strings.

You are given a table with two columns A and B, with a certain (finite)
amount of rows. Each row stores two strings (of possible different lengths), over
some arbitrary alphabet. For example,

A B
1 111

10111 10
10 0

The problem is to decide whether we can arrange one or more rows (but not
necessarily all) of the table, by also allowing to pick the same row more than
once, in such a way, the string we obtain by reading the first column from top
to bottom coincides with the string we read on the second column from top to
bottom. For example, we can consider the following arrangement of (possibly
repeated occurrences of) the rows of our table above:

10111 10
1 111
1 111
10 0

The string we obtain by reading the first column from top to bottom is
101111110. But this is also the case for the second column. So, the answer
to the PCP with input the table shown before is “yes”. If there is no way to
arrange the rows of the table as to get the same string on both sides, then the
answer is “no”.

Let us now define the PCP as a language.

LPCP =

{
(A,B)

∣∣∣∣ A and B are two equally long lists of strings and,
∃i1, i2, . . . , in such that A[i1] · · ·A[in] = B[i1] · · ·B[in]

}
.

53

Marco Calautti Notes of Computability and Computational Complexity

Note that in the above definition, n must be strictly greater than 0, i.e., we
need to pick at least one row, otherwise the problem becomes trivial.

A restriction of the PCP, called modified PCP (MPCP), requires that when
we choose the rows of the table, the first row we choose must always be the first
row of the table. So, we define LMPCP in the same way as we did for LPCP but
we additionally require that i1 = 1.

We are first going to show that LMPCP ̸∈ R, via a reduction from the uni-
versal language Lu. Then, we will show that LMPCP ≤ LPCP.

Theorem 16. Lu ≤ LMPCP.

Proof. Recall that instances of Lu are pairs (M,w) such that M is a TM and w
a string; (M,w) is a yes-instance, i.e., (M,w) ∈ Lu if M accepts w, otherwise
it is a no-instance. Our reduction must take as input pairs (M,w) and output
two lists A and B in such a way that M accepts w implies (A,B) ∈ LMPCP,
and if M does not accept w, (A,B) ̸∈ LMPCP.

Consider a pair (M,w), and let δ be the transition function of M , Γ its tape
alphabet, and let w = w1w2 · · ·wn. Given (M,w), our reduction constructs the
following “table” (actually constructs two lists).

A B Comment
#q1w1w2 · · ·wn# Initial ID of M with input w
α α ∀α ∈ Γ
-
qα βq′ if δ(q, α) = (q′, β, R), for each α ∈ Γ
q# βq′# if δ(q,⊔) = (q′, β, R)
γqα q′γβ

if δ(q, α) = (q′, β, L), for each α ∈ Γ
#qα #q′ ⊔ β
γq# q′γβ# if δ(q,⊔) = (q′, β, L)

αqaccept qaccept ∀α ∈ Γ
qacceptα qaccept
qaccept#$ $ -

Remark. In the above table we did not specify how we map “stay” moves of
the machine. Actually, these can be simulated with two moves, one right move
that goes to a new special state, and a left move going back to the previous
head position. So, we assume we map the stay moves in this way in the table.

We try to give an intuition of the construction. Since, to match the two
strings, we necessarily need to use row 1 first, we have that our string on the
left is just # and on the right we already have the complete initial ID of M
with input w.

54

Marco Calautti Notes of Computability and Computational Complexity

#
q1
w1

.

.

.
wn

#

Now, if the string on A’s side wants to “catch up” with B, because it is shorter, it
needs to match the content of the initial ID. So, for example, we need to pick the
row where on the first column we have the string q1w1. If δ(q1, w1) = (q2, a, R),
then, using this row will also increase the length of the string on B’s side,
by essentially appending to the string on the right the result of applying the
transition of M , when it is on state q1 and reads the symbol w1.

#
q1 q1
w1 w1

.

.

.
wn

#
a
q2

Then, all the remaining symbols up to the second occurrence of # will be
matched one by one using the second and third row of our table (this will also
add these symbols at the bottom of the string on B’s side). So essentially, as
soon as the string on A’s side catches up with the initial ID, the string on B’s
side will now contain the ID that M produces after the initial one.

55

Marco Calautti Notes of Computability and Computational Complexity

#
q1 q1
w1 w1

. .

. .

. .
wn wn

#
a
q2
.
.
.
wn

#

So, the string on A’s side needs to catch up again, but then we append an
additional ID to the string on B’s side, and so on. The only way for the string
on A’s side to eventually catch up with the one on B’s side, is to match an ID
containing the accepting state (i.e., M accepts w), as in that case, although the
string on B might still be longer than the one on A, it eventually loses some
symbol (for example when we match αqaccept, we only add qaccept to the string
on B’s side, losing one symbol). This “consumption of symbols” will eventually
allow the string on A’s to just need to match the accepting state “alone” between
two #’s, i.e., #qaccept#. In this case, the string on A’s side will first match #
using the third row of the tabl,e, and then conclude using the last row, matching
qaccept#$ which adds $, on the right side.

. .

. .

. .
#

qaccept qaccept
#
$ $

On the other hand, if M does not accept w, either M loops or rejects. If M
loops, then the string on A’s side will never be able to catch up with the one on
B’s side, as the length of the string on B will always be greater than the one on
A. If M rejects, then, at some point the string on B’s will contain the symbol
qreject, but there is no way for the string on A’s side to match that symbol, as
qreject does not occur anywhere on the left column of our table.

Since Lu ̸∈ R, with the above theorem in place, we conclude that the modi-
fied PCP is undecidable, i.e., LMPCP ̸∈ R. However, we are not done yet. Our
goal was to prove that the PCP is undecidable. So, we complete our proof by
showing that we can reduce MPCP to PCP.

56

Marco Calautti Notes of Computability and Computational Complexity

Theorem 17. LMPCP ≤ LPCP.

Proof. Our reduction should do the following. Given a table of strings (in the
form of two lists A and B), construct a new table of strings (A′ and B′) such
that (A,B) ∈ LMPCP iff (A′, B′) ∈ LPCP. Before showing our reduction, we
need to introduce an auxiliary notation. Let w = w1 · · ·wn be some string. We
define the notation

⋆w = ∗w1 ∗ w2 · · · ∗ wn

w⋆ = w1 ∗ w2 ∗ · · ·wn∗
⋆w⋆ = ∗w1 ∗ w2 ∗ · · · ∗ wn∗

That is, ⋆w places the symbol * on the left of each symbol in w; w⋆ places the
symbol * on the right of each symbol in w; ⋆w⋆ places the symbol * on both
left and right of each symbol in w.

Our reduction does the following. Consider an input table of strings:

A B
S1 T1
S2 T2
. .
. .
. .
Sk Tk

Our reduction converts the above table into the following one:

A B
⋆S1⋆ ⋆T1
S1⋆ ⋆T1
S2⋆ ⋆T2
. .
. .
. .

Sk⋆ ⋆Tk
$ ∗$

Assume we have a match in the original table, i.e., there are indices i1, . . . , in,
with i1 = 1, such that

Si1 · · ·Sin = Ti1 · · ·Tin .

Then, the following

[⋆Si1⋆][Si2⋆] · · · [Sin⋆][$] = [⋆Ti1][⋆Ti2] · · · [⋆Tin][∗$]

is a match in the new table.7

7We use the symbols [and] just to logically separate the different strings, but these symbols
do not appear in the match.

57

Marco Calautti Notes of Computability and Computational Complexity

On the other hand, if there is a match in the new table, this must necessarily
start from the first row, as is the only one where both strings start with the
same symbol. That is, it is of the form:

[⋆Si1⋆][Si2⋆] · · · [Sin⋆][$] = [⋆Ti1][⋆Ti2] · · · [⋆Tin][∗$]

where i1 = 1.
Moreover, note that any such a match, the symbols of the original table that

appear on the left and the right strings are always separated by exactly one *
symbol. So, the non-* symbols are kept aligned between the two strings. Thus
if we remove the symbols * and $, the match becomes a match of the original
table.

Remark. Note that in the constructed table we write the first row of the
original table twice, but in different ways. The first copy is to force any sequence
to start from the first row, while the second one treats the first row as all other
rows, and this is to allow sequences where the first row is used multiple times
(not necessarily only as the first one). Moreover, we add a last row with the $
symbol to let the right string catch up with the left one at the end of the match,
since the left strings is always one symbol (the *) longer.

Hence, since LMPCP ̸∈ R, and since we can reduce LMPCP to LPCP , we
conclude that LPCP ̸∈ R.

8.2 The Tiling Problem

We now consider another puzzle problem that does not talk about TMs. We
first introduce the problem informally. You are given a certain (finite) number
of tile types, where each tile type is colored in some way on each of its four
sides. For example, we might get the following 11 tile types.

You have infinitely many tiles at your disposal, but only of the types given
to you. Now, you can place two tiles one after the other (or one on top of the
other), only if the border they have in common is of the same color. You are not
allowed to rotate or mirror the tiles. For example, these are valid placements.

58

Marco Calautti Notes of Computability and Computational Complexity

The goal is the following. Assume you are standing on the floor, and you are
in front of a white wall, and this wall extends, starting from the floor, infinitely
in all directions (left, right, and up). This is depicted in the picture below.

Assume also that some initial tile of one of the given types is already placed
on the wall exactly in the middle of the wall, at floor level, i.e., the tile is at
position (0,0). Then, we want to decide whether it is possible to cover the whole
wall with tiles in such a way that

1. two adjacent tiles share the same color on their common border;

2. no “holes” are left on the wall;

3. You leave the initial tile where it is.

We now formally define the problem. First, we define what an instance is
for such a problem.

Definition 17. An instance of the Tiling problem is a pair of the following
form

(T, t0),

where T is a finite set of quadruples (tile types) t = (n, e, s, w) of colors, where
n is the color north of the tile type t, e is the color east of it and so on. Finally,
t0 ∈ T is the initial tile type.

59

Marco Calautti Notes of Computability and Computational Complexity

Now, we define what is a solution to the tiling problem; below we use N0 to
denote the natural numbers including the 0, i.e., the set {0, 1, 2, 3, . . .}.

Definition 18. Given an instance (T, t0) of the Tiling problem, a tiling for
(T, t0) is a function f : Z × N0 → T (assigning to each cell of the infinite wall
a tile type), such that

1. f(0, 0) = t0.

2. the east color of f(i, j) coincides with the west color of f(i+ 1, j);

3. the north color of f(i, j) coincides with the south color of f(i, j + 1).

Our language is then easily defined.

LTiling = {(T, t0) | (T, t0) is an instance of the tiling problem

for which a tiling exists}.

To prove the claim, we provide a reduction from HALT-ϵ. That is, the
language of encodings of TMs < M > such thatM does not halt when executed
with no input (i.e., the tape is empty):

HALT-ϵ = {M |M does not halt with the empty input}.

Theorem 18. HALT-ϵ ≤ LTiling.

Proof. Given a TM M , our reduction needs to construct a set of tile types T ,
and an initial tile type t0 such that M does not halt with the empty input iff
(T, t0) has a tiling f . Let q1 be the initial state of M , Γ its tape alphabet and
δ its transition function. From M , our reduction constructs the following tile
types:

60

Marco Calautti Notes of Computability and Computational Complexity

Also here, we assume we map stay moves with two moves which go right and
then left. For each tape symbol, we have a tile type having that symbol both in
the north and south as the color. On west and east it has the dummy color •.
The tile highlighted in blue is the initial tile, and has a right and a left arrow on
the east and west sides, respectively. We also have two other tile types having
blank on the north and left (resp., right arrow) on both east and west; the south
has the dummy color •.

These last two tile types are essentially needed to cover the first row of the
wall with the initial ID of the TM M , as shown in the picture below.8

Then, the two tile types associated to transitions of the form δ(q, α) = (q′, β, R)
need to allow us to cover the next row of the wall, for this, we need at the
bottom of one of the two tiles, the state-symbol combination (q, α) to match it
with the north face of a tile on the previous row. On the north of this tile we
need to place the new symbol β, and on the east we specify that the head moves
right to state q′. This is needed to match the other tile type (actually there are

8Note that in the way we have chosen the west/east colors of these tiles, this is the only
way to fill the first row of the wall.

61

Marco Calautti Notes of Computability and Computational Complexity

many, one for each possible tape symbol γ). This second tile type matches the
state q′ on its west. On the south it “asks” to the bottom tile what was the
symbol in that position of the tape (say γ), and on its north specifies that in
the new ID we have state q′ over the symbol γ.

Similar tile types are constructed for left moves. So, if for example there is
a transition δ(q1,⊔) = (q2, a, R), then, with the wall covered as shown in the
previous picture, the next row of the wall will be covered as follows:

Remark. Note that having the color
→
q2 on the two tiles above, rather than just

q2 is important. In fact, using the arrow, we guarantee that the tile applying the
transition can only be connected on the right with its paired tile. In fact, assume
we also have a transition of the form δ(q′, α) = (q2, b, L), for some symbols α, b.
The corresponding tiles should be:

However, if we don’t use the arrows, we allow the two tiles below (one coming
from δ(q1,⊔) = (q2, a, R), and the other from δ(q′, α) = (q2, b, L)) to be placed
one after the other:

62

Marco Calautti Notes of Computability and Computational Complexity

This would allow us to place two states on the same row, which clearly does not
represent a valid ID of our TM.

We conclude the discussion with an additional example showing how to fill
one more row. If, for example, we have the transition δ(q2,⊔) = (q3, b, L), then
we can use the tile types for left moves, and the first tile types, to cover the
third row of the wall as follows:

Thus, if the TMM does not halt with empty input, there are infinitely many
IDsM visits, and thus we can fully cover the wall. IfM halts with empty input,
there will be only a finite number of IDs the machine can visit, and thus we can
only cover a finite number of rows of the wall, and leave the rest uncovered.

From the theorem above, and from the fact that HALT-ϵ ̸∈ RE, we conclude
that LTiling ̸∈ RE.

63

Marco Calautti Notes of Computability and Computational Complexity

9 Rice’s Theorem

During the previous lectures, quite a good amount of the languages we have
seen that talk about TMs are undecidable, i.e., they are not in R. All such
languages essentially encode decision problems that ask something about TMs,
in particular, ask whether the language of a given TM enjoys some property.
For example, the diagonal language asks “Given a TM M , is it the case that
the language accepted by M does not contain the string wM encoding M?” As
another example, the language Le asks “Given a TM M , is it the case that the
language accepted by M is empty?” Or still, Lne asks “Given a TM M , is it
the case that the language accepted by M is non-empty?”

Properties. So, it seems that asking whether the language of a given TM has
some property always turns out to be undecidable. But is this always the case?
Or are there properties of the languages of TMs that we can actually decide?

This question is answered by a fundamental result in Computability The-
ory known as Rice’s Theorem: it tells us precisely which properties about the
language of TMs cannot be decided.

Let us first define formally the notion of property.

Definition 19. A property P is a language of TMs (i.e., a set of encodings of
TMs).

So, intuitively, a property P collects all TMs that have something in com-
mon, and given a TM M , checking if M ∈ P means checking if M has the
property that all machines in P have in common.

For example, if we consider the property

P1 = {< M >| L(M) contains only strings of even length}.

The property P1 essentially collects all TMs that only accept strings of even
length. So, P1 encodes the decision problem asking:

“Given a TM M , is it the case that M accepts only strings of even length?”

Another property could be

P2 = {< M >|M has exactly 5 states},

which encodes the decision problem asking:

“Given a TM M , is it the case that M has exactly 5 states?”

Among all properties that one might want to check about TMs, there are
two properties that are trivial. That is, they are essentially not interesting to
ask.

Definition 20. A property P is trivial if it is either empty, or it is the set of
the encodings of all possible TMs.

64

Marco Calautti Notes of Computability and Computational Complexity

Let us see why these properties are trivial. Consider the case that P is the
set of all TMs. Then, the language P encodes the decision problem asking

“Given a TM M , is it the case that M is a TM?”

The above question is trivial, because the answer to the question is always “yes”,
no matter the input TM, because obviously a TM M is a TM.

Assume now that P = ∅. Then, the language P encodes the decision problem
that essentially asks

“Given a TM M , is it the case that M is not a TM?”

Also the above question is trivial, as the answer is always “no”, no matter the
input TM, because a TM M is a TM.

Another criterion with which we classify properties is on the basis whether
they ask something about the the language of a TM or not. For example, the
property P1 is only concerned on the language of TMs, i.e., what the TMs do,
rather than how they do something. We call such properties semantic, and give
a formal definition in a second. Other properties are not concerned about the
language of a TM, but on its inner workings, like P2. These are not semantic
properties.

Definition 21. A property P is semantic if whenever two TMs M1 and M2

accept the same language, i.e., L(M1) = L(M2), then, either both M1,M2 have
the property, i.e., <M1>,<M2>∈ P, or none has, i.e., <M1>,<M2 ≯∈ P.

So, the above definition says that a semantic property must be only con-
cerned about the language of a TM. Thus, if two machines accept the same
language, it is not possible that one has the property, and the other does not,
as if this was the case, it means that despite having the same language, the
property is “selecting” one of the two machines but not the other (i.e., it is not
selecting a TM based off its language).

For example, the property P1 is semantic, because if we pick two TMs
M1,M2 accepting the same language, two things can happen. The language
L = L(M1) = L(M2) they both accept contains only even-length strings, in
which case <M1 >,<M2 >∈ P1. On the other hand, if L also contains odd-
length strings, then <M1>,<M2> ̸∈ P1. So, it is not possible that for two TMs
accepting the same language, one has the property P1 and the other doesn’t.

Considering property P2 instead, if we pick a TM M1 having exactly 5
states, we can easily build a TM M2 having more states that accepts the same
language as M1 (e.g., simply make M2 the same as M1 but with one more
dummy, unreachable state q′ the loops on itself). So, although M1,M2 accept
the same language, <M1>∈ P2, but <M2> ̸∈ P2. Hence, property P2 is not
semantic.

65

Marco Calautti Notes of Computability and Computational Complexity

Rice’s Theorem. So, besides trivial properties, that are trivially decidable,
what about the other properties? Are there properties P for which, given a TM
M , we can decide whether M has the property P (i.e., M ∈ P)?

It turns out that checking whether a TM has any (non-trivial) semantic
property is undecidable.

Theorem 19 (Rice’s Theorem). Every non-trivial, semantic property P is un-
decidable, i.e., P ̸∈ R.

Proof. Let P be a non-trivial and semantic property. To prove the claim, we
first further assume that there is no TM in P that accepts the empty language,
i.e, for each M ∈ P, L(M) ̸= ∅.

Under this assumption, we provide a reduction from the universal language
Lu to P. Before starting, let us make an observation about P. Since P is
non-trivial (and thus not empty), and since we assumed all its TMs accept a
non-empty language, we can pick some machine ML from P accepting some
non-empty language L.

We now proceed with our reduction. To show that Lu ≤ P, we need to
provide an algorithm that converts yes-instances of Lu to yes-instances of P,
and no-instances to no-instances.

Recall that an instance of Lu is a pair (M,w) of a TM M and a string w,
and an instance of P is just a TM. So, our reduction must be a mapping:

such that, if (M,w) ∈ Lu, i.e. M accepts w, then <M ′>∈ P, and if (M,w) ̸∈
Lu, i.e. M does not accept w, then <M ′> ̸∈ P.

Our reduction T , given a pair (M,w), constructs the following TM M ′:

What M ′ intuitively does is to first verify that M accepts w (note that w
is not the input to M ′, rather M ′ writes it down on a secondary tape as soon
as it starts. In case M accepts w, then M ′ essentially “becomes” ML. That is,
with a given string x to its input, M ′ simply executes the control of ML with
input x.

Let us see why T is a reduction.

Assume (M,w) is such that M accepts w. Then, M ′ will take its input
string x and accept it iff x ∈ L, i.e., L(M ′) = L(ML) = L. Since P is semantic,

66

Marco Calautti Notes of Computability and Computational Complexity

ML belongs to P, and M ′ accepts the same language as ML, we conclude that
also <M ′>∈ P.

Assume instead that (M,w) is such that M does not accept w. Then, M ′

will never execute the control of ML, and thus, whatever string x the TM M ′

takes as input, M ′ will not accept it, i.e., M ′ accepts the empty language. Since
we assumed that TMs accepting the empty language do not belong to P, we
conclude that <M ′ ≯∈ P.

The proof is not done yet, as the proof above has only shown that P is
undecidable only when P does not contain TMs accepting the empty language.
What about non-trivial, semantic properties having such TMs?

Assume P is a non-trivial, semantic property having some TMs accepting
the empty language i.e., ∃ <M>∈ P such that L(M) = ∅. Note that since P is
semantic, if even one TM accepting the empty language belongs to P, then every
TM accepting the empty language is in P. Now, let us consider the property P̄
i.e., the complement of P.

P̄ is still non-trivial, because P is non-trivial, and thus some TMs that are
not in P now belong to P̄, and some TMs that are in P, cannot belong to P̄.

Also, P̄ is semantic. To see why, assume, towards a contradiction, that P̄ is
not semantic, thus there must be two TMs M1,M2 such that L(M1) = L(M1),
but one is in P̄, e.g., < M1 >∈ P̄, and the other is not, e.g. < M2 > ̸∈ P̄. The
latter means that < M2 >∈ P (since P̄ is the complement of P). However,
since P is semantic, if < M2 >∈ P, then also < M1 > must be in P, since they
both accept the same language. However, we said < M1 > is in P̄, and obtain
a contradiction.

Finally, no TM accepting the empty language belongs to P̄, because all such
machines were in P, as discussed before.

So, P̄ is a non-trivial, semantic property with no TMs accepting the empty
language. By the first part of our proof, we know that P̄ is undecidable. But this
implies that P cannot be in R, because this would imply that its complement
P̄ is in R (Theorem 6). This completes our proof.

Examples. The above theorem is a powerful tool to study the undecidability
of many languages of TMs. As an example, consider again the problem asking

“Given a TM M , is it the case that M accepts only strings of even length?”

As we discussed, we can reformulate the above decision problem as a property
P (i.e., a language of TMs), where

P = {< M >| L(M) contains only strings of even length}.

To prove that P is undecidable, it is enough to prove that P is non-trivial,
and semantic. For showing non-triviality, we need to show that there is at least
a TM in P (i.e., P is not empty), but there is also a TM that is not in P.

Clearly, at least one TM belongs to P, e.g. the TM that accepts the simple
language made of a single string of even length {00}, and there are TMs not in

67

Marco Calautti Notes of Computability and Computational Complexity

P, like the one accepting the language {0, 1, 00, 111}, which contains odd length
strings. Thus, P is not trivial.

Now, we need to show that P is semantic. Thus, we must show that whatever
pair of TMs M1,M2 we consider that accept the same language, i.e., L(M1) =
L(M2), they are either both in P, or none of them is in P.

Remark. Another equivalent way to state that a property is semantic is that for
every two arbitraty TMs M1,M2 that accept the same language, i.e., L(M1) =
L(M2), if < M1 > is in the property P, then also < M2 > is in P.

Using the above definition of semantic property, consider two arbitrary TMs
M1,M2 with L(M1) = L(M2). Assume < M1 >∈ P. Then, by definition of P,
L(M1) contains only strings of even length. Since L(M1) = L(M2), also L(M2)
contains only strings of even length, and thus, by definition of P, < M2 > is
in P. Hence, P is semantic. Since P is non-trivial and semantic, by Rice’s
Theorem P is undecidable (i.e., P ̸∈ R).

The latter means that the problem of checking whether a TM only accepts
strings of even length is undecidable.

Let us consider other example decision problems about TMs.

1. Given a TM M , does M accept a finite language?

2. Given a TM M , does M accept an infinite language?

3. Given a TM M , does M accept a language accepted only by TMs having
5 states?

Consider the first problem. Let us write it down as a property of TMs, first.

P1 = {< M >| L(M) is finite}.

Now, to see if it is undecidable, we just need to prove that P is non-trivial and
semantic.

P1 contains at least one TM, because any finite language can be easily ac-
cepted by a TM that compares the input string with each of the (finitely many)
strings of the language. Moreover, there are TMs not in P, i.e., the ones ac-
cepting an infinite language, like {0n | n > 0}. So, P1 is non-trivial.

P1 is semantic. Indeed, consider two arbitrary TMs M1,M2 with L(M1) =
L(M2), and assume < M1 >∈ P1. By definition of P1, L(M1) is finite. Since
L(M1) = L(M2), also L(M2) is finite, and thus < M2 >∈ P1. Hence, P1 is
semantic. Thus, by Rice’s Theorem, P1 is undecidable.

Consider the second problem. So,

P2 = {< M >| L(M) is infinite}.

Clearly, as discussed above, there are TMs that accept infinite languages, and
thus P2 is not empty, and there are TMs accepting finite languages, and thus

68

Marco Calautti Notes of Computability and Computational Complexity

no all TMs are in P2. Thus, P2 is non-trivial. With an identical reasoning to
the one used for P2, we also conclude that P2 is semantic (indeed, it is clear
that P2 “selects” TMs only based off the language they accept). Thus, P2 is
undecidable.

Consider the third problem. So,

P3 = {< M >| L(M) is accepted only by TMs with 5 states}.

We now show that P3 is trivial. In fact, we show that P3 = ∅.
To prove it, it is enough to show that every language that is accepted by

a TM with 5 states, is also accepted by a TM with more states. Indeed, if a
language L is accepted by a TM with 5 states, we can just build another TM
that has one more state, which we regard as the new accepting state, and we
add a transition from the old accepting state to the new one. This machine still
accepts L and has more than 5 states.

So, no TM M exists accepting a language L(M) accepted only by TMs with
5 states, as there always exists a TM with more states accepting it. Thus,
P3 = ∅ is trivial. Since trivial properties are decidable, we conclude that P3 is
decidable.

Remark. As a last example, to remark that what is necessarily undecidable
about TMs are properties of their languages, whereas properties regarding some-
thing else might or might not be undecidable, consider the following property:

P4 = {< M >|M has an even number of states}.

The above property is clearly non-trivial, as we can easily construct a TM with
an even number states, and there definitely are TMs with an odd number of
states. However, P4 is not semantic. In fact, if we consider two arbitrary TMs
M1,M2 with L(M1) = L(M2), assuming that < M1 >∈ P4 (i.e., M1 has an
even number of states), can we conclude that also < M2 > is in P4 (i.e., M2 has
an even number of states)? No, because even if M1 and M2 accept the same
language, and M1 has an even number of states, M2 does not need to use an
even number of states as well.

For example, if we consider a TM M1 with an even number of states, we can
build another TMM2 which is almost identical toM1: the only difference is that
we add a dummy state q′ which is not reachable by any other state of the TM,
and q′ loops on itself. Thus, both M1 and M2 accept the same language, but
M1 has an even number of states, while M2 has an odd number of states. Thus
<M1 >∈ P4, whereas <M2 > ̸∈ P4. Thus, Rice’s Theorem is not applicable.
Note that this does not mean that P4 is decidable. It only means that we need
to analyse the language P4 in some other way.

The above language is decidable, because checking whether a TM M has an
even number of states simply requires scanning its encoding < M > and count
the number of states.

69

Marco Calautti Notes of Computability and Computational Complexity

10 More exercises on TMs and undecidability

We start by considering the following language:

L = {A#B#W | A,B,W ∈ {0, 1}∗ and
|B| < 2 · |A| and |W | > 2 · |A| − |B| and
B is a substring of W and AR is a substring of W}.

As an example, a string belonging to the above language is:

0100︸︷︷︸
A

011︸︷︷︸
B

#0110100100︸ ︷︷ ︸
W

.

Indeed, |B| = 3 < 2 · |A| = 8, and |W | = 10 > 2 · |A| − |B| = 5. Moreover, B is
a substring of W , as it occurs at the beginning of W , and the reverse of A, i.e.,
0010 occurs in W as well, starting from the 6th symbol in W .

Question. Devise a TM that decides the above language.

We first give an high level description of how our TM looks like, and what
are its main steps. We use 4 tapes, as shown below:

Besides the first tape, that contains the input string, the machine writes, in
tape 2, two X’s for each symbol in A, hence the number of X’s will be exactly
twice as A’s length. Then, in tape 3, our machine will write a copy of string A,
and in tape 4, a copy of string B.

The high level steps of our machine can be summarized as follows:

1. Write two X’s, for each symbol in A, on tape 2.

• While doing this, also copy each symbol of A in tape 3.

2. Check that |B| < 2 · |A|, by erasing one X from tape 2, for each symbol
read from B on the first tape. If some X remains on tape 2, after B has
been completelly scanned, then move to the next step, otherwise reject.

• While scanning B, also copy each symbol of B in tape 4.

70

Marco Calautti Notes of Computability and Computational Complexity

3. Note that now, tape 2 contains exactly 2 · |A| − |B| X’s. Check that
|W | > 2 · |A| − |B| by erasing one X from tape 2, for each symbol read
from W on the first tape. If no X’s remain on tape 2, while we can still
read a 0 or 1 from W , then move to the next step, otherwise reject.

4. Check if the rest of W contains only 0 and 1 (i.e., it does not contain the
symbol). If yes, move to the next step, otherwise reject.

5. Check if B is a substring of W . In particular,

(a) If B is empty, B is trivially a substring of W , so move to step 6.

(b) If B is not empty, guess a position inW and check that the substring
of W starting at that position coincides with B. If yes, move to step
6, otherwise reject.

6. Check if AR is a substring of W . In particular,

(a) If A is empty, AR is trivially a substring of W , so accept.

(b) If A is not empty, guess a position inW and check that the substring
of W starting at that position coincides with AR. If yes, accept,
otherwise reject.

We now implement each of the above steps in our TM. In particular, each
part of the TM implementing a certain step is highlighted with a different color.
On the right of the TM you can see a small legend, describing which color
corresponds to which step.

71

Marco Calautti Notes of Computability and Computational Complexity

72

Marco Calautti Notes of Computability and Computational Complexity

Consider now the language L we have discussed above. Discuss the decid-
ability/undecidability status of the following properties.

P1 = {< M > | M accepts L}
P2 = {< M > | M accepts L and

each string in L is accepted in less than 100 steps}
P3 = {< M > | M does not accept L ∩ {0, 1,#}100}

P1. This is a language over TMs, so it is a property of TMs. We can first try
to see if this property is non-trivial and semantic, in which case Rice’s Theorem
will allow us to conclude that P1 is not in R. P1 is non-trivial because it is not
empty, as there is at least a TM that accepts L (we just devised one that even
decides L), and there clearly are TMs not belonging to P1, e.g., pick any TM
accepting a language different than L.

For P1 to be semantic, we must show that if we consider two arbitrary TMs
M1,M2 with L(M1) = L(M2), if < M1 > is in P1, then < M2 > is in P1.

So, letM1,M2 be arbitrary TMs accepting the same language, i.e., L(M1) =
L(M2). If < M1 > is in P1, then it means that M1 accepts L, i.e., L(M1) = L.
Since L(M1) = L(M2), then also L(M2) = L. Hence, M2 accepts L, which
means < M2 >∈ P1. So, P1 is semantic, and by Rice’s Theorem, P1 is unde-
cidable.

P2. Also P2 is a language over TMs, i.e., it is a property. Let’s see if it is
non-trivial and semantic. P2 is trivial. In particular, in this case we have that
P2 = ∅. This is because no TM that accepts L can accept each string in L in
less than 100 steps. For example, consider the string 0100#1100#01001100. You
can easily verify the string belongs to L. There is no way, however for a TM
to recognize that this string is in L in only 100 steps, as the machine will not
be able to scan the whole string in 100 steps, to realize, for example, that the
B part is shorter than twice the length of the A part. Since P2 is trivial, P2 is
decidable, as the TM that always rejects decides P2.

P3. This is also a language of TMs. Let’s see if it is non-trivial and semantic.
P3 collects all TMs that do not accept any string of exactly length 100, that
appear in L. The property is not trivial, there definitely are TMs in P3, as
these are the ones that accept any language different than L∩{0, 1,#}100 (pick
any of the ones we have seen in our exercises), and there is at least one TM
M not in P3, i.e., M accepts L ∩ {0, 1,#}100. There are many ways to prove
this. One way is observe that L ∩ {0, 1,#}100 is a finite language, and every
finite language is decidable, and thus can be accepted by some TM. Another
way is to pick the TM M we built for L at the beginning of these notes, and
before starting, it first checks that its input is of length 100. If it is not, rejects,
otherwise, it executes normally. Thus, P3 is non-trivial.

Let’s see if P3 is semantic. Intuitively, this is the case because it refers to the
language of the TMs therein, but let us prove it formally. Consider two arbitrary

73

Marco Calautti Notes of Computability and Computational Complexity

TMs M1,M2 accepting the same language L(M1) = L(M2). If < M1 >∈ P3,
then M1 does not accept L ∩ {0, 1,#}100, i.e., L(M1) ̸= L ∩ {0, 1,#}100. Since
L(M1) = L(M2), also L(M2) ̸= L ∩ {0, 1,#}100, and thus < M2 > is in P3.
Thus, P3 is semantic. Since P3 is both non-trivial and semantic, by Rice’s
Theorem, P3 is undecidable.

Another example. We consider one last example.

P4 = {< M >|M decides L}.

This property might seem identical to P1 but they are not! P1 is asking whether
a TM accepts L, whereas P4 asks whether a TM decides L. This can make a
difference. P4 is still non-trivial, as we know that there is a TM deciding L
(the one we devised at the beginning of these notes), and there of course are
other TMs, that do not decide L, e.g., they decide different languages than L.
However, as strange it might seem, the property is not semantic.

To show that P4 is not semantic, we need to show that there are two TMs
M1,M2 accepting the same language, such that <M1>∈ P4, but <M2> ̸∈ P4.
LetM1 be the TM we devised before to decide L. This, by definition, belongs to
P4. Now, consider the TMM2 that is indentical toM1, with the only difference
that every transition of M1 moving to the rejecting state is replaced with a
transition to a special state q′, on which M2 then loops. Clearly, M2 accepts L,
and thus L(M1) = L(M2), but it does not decide L, because, whenever the input
string is not in L, M2 does not reject: it loops instead. Hence, <M2 > ̸∈ P4.
Thus, althoughM1 andM2 accept the same language, one of them is in P4, and
the other is not, which implies that P4 is not semantic.

So, if P4 is undecidable, we need to prove it without Rice’s Theorem, e.g.,
with a reduction. In the following, let us call ML the TM that decides L (the
one we implemented, for example). We reduce the universal language Lu to P4.
Our reduction takes as input a pair (M,w) and outputs a TM M ′ defined as
follows:

If M accepts w, then M ′ will execute the control of ML, and thus decide
the language L, and thus <M ′>∈ P4. If M does not accept w, M ′ will never
execute the code of ML, and thus M ′ rejects every string, i.e., M ′ decides the
empty language ∅. However, L ≠ ∅, and thus <M ′> ̸∈ P4.

We conclude that P4 is undecidable.

74

Marco Calautti Notes of Computability and Computational Complexity

11 Introduction to Computational Complexity

By now, you should have a quite good understanding of the concepts of decid-
ability and undecidability. We have shown that there exists a good number of
languages that are undecidable, and this happens at different levels. Moreover,
Rice’s Theorem has shown us that actually almost all questions regarding the
language of TMs is inevitably undecidable. But there also exists a plethora of
problems that are indeed decidable, and thus can be effectively solvable by a
TM.

However, everybody will agree that not all problems that are solvable are
equally difficult to solve. It is reasonable to believe that some decidable problems
require more resources (in time and memory) than other decidable problems.
Our current classification of languages, however, does not take these parameters
into account.

We then define some new classes of decidable languages, called “Complexity
classes” that will help us better understand the resources that are needed by a
TM in terms of time and memory in order to decide them.

For this, recall that for TM M , TM (n) denotes the time required by M with
inputs of length n.

11.1 The Complexity class P

Let us first setup some notation.9

Definition 22. Let f : N → N be a function. We define

DTIME(f(n)) = {L | ∃ a TM M that decides L and TM (n) ∈ O(f(n))}.

So, essentially DTIME(f(n)) collects all languages that can be decided by a
Deterministic TM that always requires a number of steps that is at most of the
order of f(n), where n is the size of its input.

With the above definition at hand, we can now define our first complexity
class.

Definition 23. The class of polynomial-time languages is defined as

P =
⋃
c≥1

DTIME(nc).

So, P collects all languages that can be decided by a TM in at most a
polynomial number of steps (and the polynomial can be of any fixed degree).

Remark. Note that we could have considered multi-tape, or multi-track TMs
as well, and the class P would remain the same, since they can all be simulated
by a single-tape, single-track TM with only a polynomial-time overhead.

9Recall that we focus on languages over the binary alphabet.

75

Marco Calautti Notes of Computability and Computational Complexity

We usually regard problems described by languages in P as tractable (or
feasible) problems. That is, the time required to provide the right answer “only”
increases polynomially, as the size of the input increases.

One might argue, however, that there is nothing feasible in a language that
can be decided by a TM in time O(n1000), whereas a language decidable in time
O(2n/100) is more likely to be efficiently decided in practice.

This is true, in general. However, experience has shown that most of the
time, when we show a language is in P, we usually do so by finding algorithms
of lower complexity, like O(n5) or O(n2), and rarely we find languages whose
algorithms are exponential with such low exponents like n/100. Moreover, if a
language is first shown to have an algorithm of high polynomial complexity, like
O(n20), this is usually just a first step, and better algorithms are going to show
up later on, that improve such a polynomial. Let’s see some example languages
that are in P.

Remark. If we are willing to be very formal, in order to show that a language
is in P, we are required to exhibit a TM M that decides the language with
time TM (n) ∈ O(nc), for some constant c ≥ 1. However, devising such TMs
can quickly become a very tedious task, and we will spend most of our time in
being concerned of low-level details, such as the encoding of the input, the head
moving on specific cells, and so on.

So, to keep the discussion at the right level of details, we usually resort to
algorithms written in some sort of pseudo code. This should provide the high
level ideas, and you should not find very difficult to imagine how this pseudo
code could be actually implemented in a TM (maybe with multiple tapes).10

REACHABILITY. The first language we consider is the REACHABILITY
language we have seen in our first lectures:

REACHABILITY = {(G, s, t) | G is a directed graph such that

there is a path from s to t in G}.

So, the above language describes the decision problem asking the question

Given a directed graph G and two nodes s, t, is there a path from s to t in G?

As an example, given the graph G below, and nodes s = 1 and t = 5, the
answer is “yes”, as there is a path 1,4,3,5 in G.

10Indeed, one can show that any algorithm written for a RAM machine, i.e., a modern
computer, can be implemented in a TM with only a polynomial-time overhead. Since we are
mostly concerned about languages in P and above, this is perfect for our purposes.

76

Marco Calautti Notes of Computability and Computational Complexity

Algorithm 1: Algorithm for REACHABILITY

Input: A directed graph G = (V,E) and two nodes s, t
Output: ”Yes” if there is a path from s to t in G, and “no” otherwise

1 Init an empty queue Q;
2 Mark the node s as visited ;
3 Append s at the end of Q;
4 while Q is not empty do
5 v := Q.dequeue(); //extracts the first element of the queue in v
6 if v = t then
7 Answer “yes” and Halt;
8 end
9 foreach (v, u) ∈ E such that u has not been visited do

10 Mark u as visited;
11 Append u in Q;

12 end

13 end
14 Answer “no”;

We can easily show that REACHABILITY is in P. Indeed, we can use any of
the many graph traversal algorithms that can be found in standard Algorithms
books. For example, the breadth-first search, as shown in Algorithm 1 above.

The first three steps require constant time, while the bulk of the work is
done inside the while loop. Indeed, in the worst case, the algorithm will need
to visit all nodes, so Q will become empty in at most n = |V | iterations of the
while loop. At each iteration, the queue is filled with all the neighbours of a
node v, which in the worst case are all nodes in V , hence n. So, overall the
algorithm requires time O(n2).

Note that n is just the number of nodes of the graph, and not the size of
the encoding of the whole input (G, s, t). To perform a more precise analysis
we should clarify how we encode a graph, e.g., do we use an adjacency matrix,
or an adjacency list? In any case, this would not make the algorithm become
exponential, and thus we do not go into these details. So, the analysis above is
enough to conclude that the algorithm runs in time polynomial in the size of its
input.

PRIME. Another interesting language in P is PRIME. For a natural number
N ∈ N, we use < N > to denote its encoding in binary.

PRIME = {< N >| N is a prime number}.

A very simple algorithm deciding PRIME is the one iterating over each possible
divisor of N , excluding 1 and N itself, i.e., k = 2, . . . , N − 1, and checking
if k divides N . This procedure requires O(N) iterations. However, we must

77

Marco Calautti Notes of Computability and Computational Complexity

be careful with our analysis here, as we have stated the running time of the
algorithm in terms of a different parameter than the actual size of the input
(i.e., the number of bits used to encode N). So, let us try to rewrite N in terms
of the the number of bits, say n, used to encode N .

How may bits n do we need at most to encode N? In the worst case, this is
n = ⌈log2(N)⌉. Thus, by writing N in terms of n, we conclude that N ∈ O(2n).
Hence, the algorithm requires an exponential number of steps w.r.t. the size of
its input.

Another way to see it is that if you increment the input size by one (i.e.,
you add only one bit to the input), then in the worst case you are doubling the
number N , and thus double the running time of the algorithm.

This means that our algorithm is not able to deal with very large numbers
efficiently, i.e., assume we give as input the number N = 21024 (this is a number
with 308 digits in decimal!). This number only requires 1024 bits to be encoded
(i.e., 128 bytes, which is very small), but our naive algorithm would require
21024 steps, which is huge.

So, does it mean that PRIME is not in P? There has been no known
algorithm that solves PRIME in polynomial time for quite a long time, until it
has been shown, in the early 2000s, that indeed PRIME is in P. The algorithm,
however, is far from being simple!

11.2 The Complexity class NP

We have seen the classP of all languages that are deemed tractable, i.e., they can
be decided by a TM in polynomial time. However, there are also languages that
do not seem to be in P. More precisely, despite the efforts of many researchers,
during the last 50 years, we are still not aware of any algorithm that decides
these languages in polynomial time.

SAT. A Boolean variable x is a variable that can only take values in {0, 1}
(or equivalently {false, true}). A literal is either a variable x or its negation ¬x.
A Boolean formula in conjunctive normal form (CNF) is an expression over
Boolean variables of the form

C1 ∧ C2 ∧ · · · ∧ Cn,

where each Ci, called clause, is a disjunction of literals, i.e., it is of the form:

(ℓ1 ∨ · · · ∨ ℓk),

where each ℓi is a literal.

Example 4. This is an example of a CNF Boolean formula:

φ = (x1 ∨ x2 ∨ ¬x3) ∧ (x4 ∨ ¬x5) ∧ (x1 ∨ ¬x5).

Definition 24. Consider a Boolean formula φ in CNF using variables x1, . . . , xn.
A truth assignment for φ is a function τ : {x1, . . . , xn} → {0, 1}, mapping each
variable to a truth value.

78

Marco Calautti Notes of Computability and Computational Complexity

Definition 25. A CNF Boolean formula φ is satisfiable if there is a truth
assignment τ that makes φ true.

Example 5. For the formula φ of the previous example,

x1 → 1 x2, x3, x4, x5 → 0

is a truth assignment that satisfies φ.

The decision problem we are interested in is

Given a Boolean formula in CNF φ, is φ satisfiable?

Thus, the SAT language is the following set of (encodings of) Boolean for-
mulas:

SAT = {φ | φ is a Boolean formula in CNF that is satisfiable}.

A naive procedure that checks if a given formula φ is satisfiable simply
iterates over every possible truth assignment, and checks if one satisfies the
formula. Note that given a Boolean CNF formula φ and a truth assignment,
checking whether the assignment satisfies φ is rather “easy”. In fact, it is enough
to iterate over each clause Ci of φ, and for each Ci, verify that at least one literal
of Ci becomes true under the assignment.

So, checking that a truth assignment satisfies φ requires time O(m · c), if
m is the number of clauses and c the maximum number of literals in a clause.
However, if n is the total number of Boolean variables in φ, there are 2n possible
truth assignments to try. Hence, the overall procedure requires O(2n · m · c)
steps, in the worst case. Recalling that we want a time bound in terms of the
overal size of the input, we can employ the usual trick, by observing that all
such parameters n,m, c are all necessarily smaller than the number of bits, say
b, used to encode the input, and so, if n ≤ b, m ≤ b, and c ≤ b, we have
O(2n ·m · c) = O(2b · b2) = O(2b · 2b) = O(4b).11

Can we do better than the naive algorithm? The answer to this question
is simply “We do not know”. No known algorithm is able to decide SAT in
polynomial time.

Independent Sets. Another language of which we do not know any polyno-
mial time algorithm yet is about graphs. Consider an undirected graph G =
(V,E). That is, a graph where an edge e ∈ E is a set e = {u, v} of two distinct
nodes u, v of V , rather than an ordered pair (u, v).12

11From now on, we will give time bounds using different parameters of the input, to make
the analysis more clear, but we should always remember that these bounds must always be
converted in terms of the size of the whole input.

12Note that since we assume an edge contains two distinct nodes, we do not allow self-loops
in our undirected graphs. We will assume this throught the course for simplicity.

79

Marco Calautti Notes of Computability and Computational Complexity

An independent set of G is a set S of nodes of G, such that no two nodes in S
are connected by an edge.

Example 6. In the example graph above, S1 = {2, 4, 5} is an independent set,
as no two nodes in S1 are connected by an edge. Also the set S2 = {2} is an
independent set, as well as every other singleton node set. Furthermore, also
the empty set of nodes S3 = ∅ is an independent set. The set {1, 3, 5} is not an
independent set, since 3 and 5 are connected by an edge of the graph.

The decision problem we are interested in is

Given an undirected graph G and an integer k, does G have an independent set
with at least k nodes?

The corresponding language is the following set of (encodings of) pairs of an
undirected graph G and integer k:

IS = {(G, k) | G is an undirected graph
with an independent set S such that |S| ≥ k}.

Remark. Note that we are not asking whether a graph G has an independent
set (of any size), as this problem is not interesting: the answer to this question is
always “yes”. Every graph has an independent set (e.g., the empty set). Thus,
also asking for the existence of an independent set of size at most k is trivial,
as the cardinality of the empty set is smaller than any k.

Given a pair (G, k), a naive procedure for deciding IS simply tries all possible
sets of nodes of G of cardinality at least k, and checks if one of these sets is
independent. Again, given a graph G, and a set of nodes S, checking if S is
independent is easy: check that every pair of nodes in S is disconnected. This
requires time O(n2) (S contains at most all n nodes of G, and thus n(n− 1)/2
is the maximum number of pairs). However, there are

n∑
i=k

(
n

i

)
sets of nodes to try. Thus, the naive procedure does not decide IS in polynomial
time.13 Also for IS, no polynomial time algorithm is known to date.

13We recall that
(n
i

)
= n!

i!·(n−i)!
is the number of all possible sets of cardinality i that can

be constructed by using elements from a set of cardinality n.

80

Marco Calautti Notes of Computability and Computational Complexity

There exist many other languages that have similar properties to SAT and
IS and for which no polynomial time algorithm is known. Let us see what all
these languages have in common.

In all such languages, to decide whether a string belongs to the language,
we need to consider many candidate solutions. Although there might be expo-
nentially many candidates, we have that

• each candidate solution is “small”, i.e., of polynomial size w.r.t. the size
of the input (e.g., an independent set contains at most |V | nodes), and

• verifying that a candidate solution is indeed a solution only requires poly-
nomial time.

We already know a kind of TMs that is able to implement the above pattern
efficiently: non-deterministic TMs.

Indeed, one could decide SAT in polynomial-time, if we are allowed to
use non-determinism. Given a CNF Boolean formula φ over some variables
x1, . . . , xn, our NTM M needs to do the following:

1. Guess a truth assignment for φ, i.e., write n bits on the tape, by non-
deterministically choosing the value of each bit. So, the i-th bit is the
guessed truth value for the variable xi.

2. Verify that the guessed assignment satisfies φ, in which case accept, oth-
erwise reject.

Thus, what we are doing here is to make use of non-determinism to try each
candidate solution in a different path of the computation tree of M , and in
each path, M accepts if the candidate solution is indeed a solution, and rejects
otherwise.

81

Marco Calautti Notes of Computability and Computational Complexity

Moreover, the time required by the above NTM M is polynomial in the size
of φ, since each solution is of length polynomial (in this case, n), and thus M
non-deterministically writes polynomially many symbols in its tape. Then, M
verifies that what it has written is a truth assignment that satisfies φ, which
can be done in polynomially many steps, as discussed before.

Similarly, we can decide IS with a NTM with the same pattern. Given
an undirected graph G with n nodes and a number k, our NTM M does the
following:

1. For each node v of G, non-deterministically decide if v must be written in
the tape or not;

2. If at least k nodes have been written, and no two of them are connected
in G, then accept, otherwise reject.

Again, we use non-determinism to guess a candidate solution, and then,
verify that the guessed candidate solution is indeed a solution. Moreover, the
total number of steps our machine performs in a path of its computation tree is
at most polynomial w.r.t. size of the input.

Definition 26. Let f : N → N be a function. We define

NTIME(f(n)) = {L | ∃ a NTM M that decides L and TM (n) ∈ O(f(n))}.

So, NTIME(f(n)) collects all languages that can be decided by a non-
deterministic TM in time O(f(n)).14 We are now ready to define our class
of languages.

Definition 27. The class of non-deterministic polynomial-time languages is
defined as

NP =
⋃
c≥1

NTIME(nc).

So, a language is in NP if it can be decided by a NTM in polynomial time.

Remark 1. Note that in the definition of NP, we are not requiring that the
NTMs that decide the languages in NP follow the guess and check approach. In
general, a NTM can use non-determinism at any point of its computation, and
not only at the beginning. This might indicate that our definition of NP not
only collects languages decidable with the guess and check approach, but also
others. However, as we are going to see, later on in the course, any polynomial-
time NTM can be converted to a polynomial-time NTM that uses the guess and
check approach.

Remark 2. Note thatNP does not mean “not polynomial”, but it means “non-
deterministic polynomial time”. That is, if we are allowed to get some help from
non-determinism, we can still decide the language in polynomial time. This is,

14Recall that for a NTM M , the time required TM (n) is the length of the longest path in
its computation tree, when considering all inputs of length n.

82

Marco Calautti Notes of Computability and Computational Complexity

in some sense, our way to identify a class of problems that are not that hard to
solve, when given some help.

We conclude observing that our discussion above implies that SAT, IS ∈ NP.

83

Marco Calautti Notes of Computability and Computational Complexity

12 P vs NP and NP-completeness

In the previous lecture we introduced two key complexity classes: P and NP.
We also briefly discussed some languages in both classes, and identified lan-
guages in NP that seemingly do not admit any (deterministic) polynomial time
procedure for deciding them, but admit a non-deterministic, polynomial-time
one.

Indeed, by their very definition, we clearly see that P ⊆ NP, since if a
language is decided by a TM in polynomial time, this TM is itself also a NTM
with precisely one choice at each step. However, it is not at all clear whether
some languages in NP are really harder to decide, or it is just the case that we
were not clever enough to find better algorithms.15

In other words, is it the case that P = NP? That is, can every language
decided by a NTM in polynomial time be also decided by a “more clever” TM,
that without non-determinism still requires polynomial time?

The above question has been asked for the first time in 1971 by computer
scientist and mathematician Stephen Cook, and to date, the answer to this
question is still unknown.

Different efforts have been put in answering the P = NP question, and
different formal tools have been developed to get closer to an answer.

One way of tackling the P = NP question is to identify some very hard lan-
guages in NP, that we call NP−complete. The property that these languages
enjoy is the following:

There can be a polynomial-time algorithm for deciding an NP−complete
language iff every language in NP can be decided in polynomial time (i.e.,
P = NP).

So, intuitively, NP−complete languages are considered to be the hardest
languages to decide, among all languages inNP, and deciding one in polynomial
time is equivalent to given an answer to theP = NP question. We now formalize
the notion of NP−completeness.

12.1 NP−complete languages

We first need to introduce the notion of polynomial-time reductions.

Definition 28. A polynomial-time reduction M from a language L1 to a lan-
guage L2 is a reduction from L1 to L2 such that TM (n) ∈ O(nc), with c > 0.

We write L1 ≤p L2 to say that L1 reduces to L2 in polynomial time, i.e.,
there is a polynomial-time reduction from L1 to L2.

So, a polynomial-time reduction is just a reduction that requires a polyno-
mial number of steps for converting a string into another string. We now define
the languages that are at least as hard as all the languages in NP.

15Note that we are not saying that every language in NP is not in P, as REACHABILITY,
for example, is in P and thus also in NP. Rather, there are some special NP languages that
seem to not be in P.

84

Marco Calautti Notes of Computability and Computational Complexity

Definition 29. A language L is NP−hard if for every language L′ ∈ NP,

L′ ≤p L.

So, intuitively, it means that if we were able to decide an NP−hard language
L in polynomial time, then, we could decide every NP language in polynomial
time, by first converting the input string to a string for L in polynomial time,
and then decide if the string is in L in polynomial time.

Hence,NP−hard languages are at least as hard to decide as all the languages
in NP. However, we wanted to discuss about the hardest languages among the
ones in NP. The fact that a language is NP−hard does not mean this is also
in NP. To guarantee this, we need that our language is NP−complete.

Definition 30. A language L is NP−complete if L ∈ NP and L is NP−hard.

We can now show the connection between NP−completeness and the P =
NP question.

Theorem 20. Let L be an NP−complete language. Then,

L ∈ P if and only if P = NP.

Proof. To prove the claim we need to prove two parts: that L ∈ P implies
P = NP, and that P = NP implies L ∈ P. We first focus on the second.

Assume P = NP. Then, for every language in NP, there exists a determin-
istic TM that decides the language in polynomial time. Since L is also in NP,
as it is NP−complete, and not just NP−hard, L must also have a deterministic
TM that decides it in polynomial time, and thus L ∈ P.

Assume now that L ∈ P, i.e., there exists a deterministic TM M that
decides L in polynomial time. Let L′ be an arbitrary language in NP. Since
L is NP−complete, and thus NP−hard, there is a polynomial-time reduction
T from L′ to L. As usual, the following deterministic TM M ′ decides L′, by
first converting the input string w to a string w′ and then using M to decide
whether w ∈ L′ or not.

Moreover, if |w| = n,M ′ performs in two phases. It first executes T in a number
of steps that is O(nc), for some c > 0. Thus, since in the worst case, T writes one
symbol in its output tape at each step, we have thatm = |w′| ∈ O(nc). Then, in
a second phase, M ′ executes the control of M with input w′. Since we assumed
that M requires a polynomial number of steps, M requires O(md) = O(nc·d)
steps, for some d > 0. Thus, TM ′(n) ∈ O(nc + nc·d), and thus M ′ decides L′ in
a polynomial number of steps w.r.t. the size of its input, and we conclude that
L′ ∈ P.

85

Marco Calautti Notes of Computability and Computational Complexity

The above holds for any language L′ ∈ NP, and thus, NP ⊆ P, that
together with the fact that P ⊆ NP, implies P = NP.

Remark. Note that for proving the above claim, the use of polynomial-time
reductions, rather than any kind of reductions, is crucial.

Indeed, if the reduction from a language L1 to L2 is, e.g., exponential, and
we assumed L2 is in P, we would not be able to combine the reduction with
the polynomial-time TM deciding L2, and obtain a polynomial-time TM for
deciding L1.

Another way to see it is that the goal of a reduction, in complexity theory,
is to guarantee that if we have an efficient algorithm for solving the target
problem, we can use the reduction to solve the source problem by first converting
the instance with the reduction and then use the efficient algorithm for the
target. But if converting the instances is more demanding than solving the
source problem itself, then there is no point in using the reduction, and we
could very well solve the source problem directly.

So, it seems NP−completeness is a useful notion for tackling the P = NP
question. However, for this tool to be really effective, it is important that at
least an NP−complete language exist. So, how would we go about showing
that an NP−complete language L exists?

Generally, we should apply the definition: prove that every language L′ in
NP reduces to L in polynomial time. This seems quite a challenging task (and
it actually is).

The very first language that has been shown to be NP−complete is SAT,
which we already mentioned in the previous lecture:

SAT = {φ | φ is a Boolean formula in CNF that is satisfiable}.

Recall that a formula is satisfiable if there is an assignment τ : {x1, . . . , xn} →
{true, false} of a truth value to each variable of φ such that τ satisfies φ.

Theorem 21. SAT is NP−complete.

The proof for the above result is quite involved, and we will see it much
later on in the course. For the moment, let us just take the above theorem for
granted.

In the meanwhile, one question that we might ask is the following: is explic-
itly reducing every language in NP to our language L the only way to prove
that L is NP−hard?

We are now going to show that once we know that at least oneNP−hard lan-
guage exists (e.g., SAT), showing that other languages are NP−hard becomes
much easier (not easy, but easier!).

First, we show that polynomial-time reductions can be composed.

Theorem 22. If L1 ≤p L2 and L2 ≤p L3, then

L1 ≤p L3.

86

Marco Calautti Notes of Computability and Computational Complexity

Proof. Let M1 and M2 be the polynomial-time reductions from L1 to L2, and
from L2 to L3 respectively. Since they are polynomial-time reductions, we have
TM1

(n) ∈ O(nc), and TM2
(n) ∈ O(nd). Thus, the following TM M3 is such that

TM3
(n) ∈ O(nc + (nc)d) = O(nc·d).

So, M3 is still a polynomial-time TM. M3 is also a reduction from L1 to L3.
Assume w ∈ L1. Then w′ ∈ L2 (since w′ is obtained with the reduction

M1), and since w′ ∈ L2, then w
′′ ∈ L3 (since w′′ is obtained with the reduction

M2). Similarly, if w ̸∈ L1, we conclude that w′′ ̸∈ L3.

We now show how we can transfer the knowledge we have about anNP−hard
language to another language.

Theorem 23. If a language L1 is NP−hard and L1 ≤p L2, then

L2 is NP−hard.

Proof. Assume L1 is an NP−hard language and assume L1 ≤p L2. We need to
prove that for every language L ∈ NP, L reduces to L2 in polynomial time.

Let L be an arbitrary language in NP. Since L1 is NP−hard, then L ≤p L1.
Since L ≤p L1 and L1 ≤p L2, by Theorem 22, we conclude that L ≤p L2.
Thus, every language in NP reduces to L2 in polynomial time and then L2 is
NP−hard.

With Theorem 23 above in place, we now have a very useful tool for showing
that a language L is NP−complete. It is enough to prove two things: L is in
NP, and that we can reduce a known NP−hard language (e.g., SAT) to L in
polynomial time.

12.2 Another NP−complete language

We now show an application of Theorem 23. We consider a “simpler” version of
SAT, called 3-SAT, and we show that even this simpler version isNP−complete.

A Boolean formula φ is in 3-CNF if each of its clauses contains at most 3
literals.

Example 7. The Boolean formula we have seen in the previous lecture is in
3-CNF:

φ = (x1 ∨ x2 ∨ ¬x3) ∧ (x4 ∨ ¬x5) ∧ (x1 ∨ ¬x5).

87

Marco Calautti Notes of Computability and Computational Complexity

Thus, the language we are interested in is

3-SAT = {φ | φ is a Boolean formula in 3-CNF that is satisfiable}.

That is,

Given a Boolean formula φ in 3-CNF, is φ satisfiable?

Theorem 24. SAT ≤p 3-SAT.

Proof. We need to show how to convert (in polynomial time) a general Boolean
CNF formula φ to a formula in 3-CNF φ′, and at the same time be such that φ
is satisfiable iff φ′ is satisfiable.

Consider a Boolean formula in CNF

φ = C1 ∧ C2 ∧ · · · ∧ Cm.

Let us focus on a generic clause Ci. A clause is the disjunction of some literals,
i.e., Ci is of the form

(ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk).

Our goal is to lower the number of literals in each clause Ci. To do so, we
construct a new formula φ′ starting from φ as follows. We check if Ci has more
than 3 literals. If not, we copy the clause in φ′ without changing it.

Otherwise, we convert Ci into the conjunction of two clauses C ′
i and C

′′
i . In

clause C ′
i, we leave the first two literals ℓ1, ℓ2 and replace the remaining k − 2

literals with a fresh new Boolean variable, say hi. So, we obtain the clause

C ′
i = (ℓ1 ∨ ℓ2 ∨ hi).

Moreover, the clause C ′′
i contains the remaining literals, plus ¬hi:

C ′′
i = (ℓ3 ∨ · · · ∨ ℓk ∨ ¬hi).

We do the above for all clauses of φ.

Note that the new formula φ′ has at most 2m clauses, where m of them have 3
literals (the yellow ones), and the other m have one literal less than the clause
from which they come from (the red ones). By applying this process again on
φ′, we obtain a formula φ′′ with 3m clauses, where 2m clauses have 3 literals
(the yellow ones), and m clauses have one literal less (the red ones), and so on,
as shown below.

88

Marco Calautti Notes of Computability and Computational Complexity

So, if k is the maximum number of literals in a clause of φ, we can apply
this process at most k times, and obtain a formula in 3-CNF with at most
k · m clauses. Thus, the overall procedure converts φ to a 3-CNF formula in
polynomial time.

What is left to prove is that the above transformation preserves satisfiability.
If we show it for one of the n steps of the above process, as a consequence, the
whole procedure preserves satisfiability.

Assume φ is satisfiable, i.e., there is a truth assignment τ over the Boolean
variables of φ that makes every clause of φ true. We need to prove that there
is also a truth assignment τ ′ of the variables of φ′ that makes each clause of φ′

true.
Let τ : {x1, . . . , xn} → {true, false} be such a truth assignment of the vari-

ables of φ that makes each clause Ci of φ true. This means that at least one
literal ℓj in Ci becomes true thanks to τ . Thus, either the clause

C ′
i = (ℓ1 ∨ ℓ2 ∨ hi)

or the clause
C ′′

i = (ℓ3 ∨ · · · ∨ ℓk ∨ ¬hi)

in φ′ becomes true under τ , because contains the literal ℓj . To see that φ′ is
satisfiable, observe that the Boolean variables of φ′ are precisely the ones of φ,
i.e., x1, . . . , xn, plus the variables h1, . . . , hm (one for each clause). Then, the
truth assignment τ ′ that satisfies φ′ is the one that assigns to x1, . . . , xn the
same values as τ , and if the true literal ℓj of a clause Ci appears, e.g., in the
clause C ′

i of φ′ (and thus τ ′ makes C ′
i true), then τ ′(hi) = false (making C ′′

i

true as well). Otherwise, if the true literal ℓj of a clause Ci appears in C
′′
i (and

89

Marco Calautti Notes of Computability and Computational Complexity

thus τ ′ makes C ′′
i true), then τ ′(hi) = true (making C ′

i true as well). Hence, τ ′

satisfies φ′.
We now need to prove the converse, i.e., if φ′ is satisfiable, then φ is sat-

isfiable. Assume φ′ is satisfiable, i.e., there is a truth assignment τ ′ over the
Boolean variables of φ′ that makes every clause of φ′ true. Remember that φ′

is of the form:

C ′
1 ∧ C ′′

1 ∧ C ′
2 ∧ C ′′

2 ∧ · · · ∧ C ′
m ∧ C ′′

m,

where C ′
i = (ℓ1 ∨ ℓ2 ∨ hi) and C ′′

i = (ℓ3 ∨ · · · ∨ ℓk ∨ ¬hi) come from the same
clause Ci = (ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk) of φ. Let τ be truth the assignment over the
variables x1, . . . , xn of φ such that τ(xi) = τ ′(xi) for each i ∈ {1, . . . , n} (i.e., τ
is precisely as τ ′, but does not assign any value to h1, . . . , hm). Since τ ′ makes
both C ′

i and C
′′
i true, and since τ ′ must assign one specific truth value to hi, it

cannot make make both C ′
i and C ′′

i true only thanks to hi, but it must make
some literal ℓj of Ci true as well. This implies that τ(ℓj) = true, and thus τ
satisfies Ci. This holds for all clauses of φ, and thus φ is satisfiable.

Theorem 25. 3-SAT is NP−complete.

Proof. We need to prove that 3-SAT is in NP and it is NP−hard. Since SAT is
in NP, also its simplified version 3-SAT must be in NP. NP−hardness follows
from Theorem 24 (SAT ≤p 3-SAT), Theorem 21 (SAT is NP−complete), and
Theorem 23.

Remark. Note that the approach used to reduce SAT to 3-SAT cannot be used
to convert a Boolean CNF formula in 2-CNF. In fact, to reduce the number of
literals in a clause

Ci = (ℓ1 ∨ ℓ2 ∨ ℓ3),
we might try to construct the clauses

C ′
i = (ℓ1 ∨ h)

and
C ′′

i = (ℓ2 ∨ ℓ3 ∨ ¬h).
However, C ′′

i still contains three literals.
Indeed, there is no known reduction from SAT to 2-SAT, and a strong evi-

dence for the non existence of such a reduction is the fact that 2-SAT is known
to be in P (we do not show any proof for this).

Theorem 26. 2-SAT is in P.

So, if we were able to reduce SAT to 2-SAT in polynomial time, we would
show that 2-SAT is NP−hard but also in P, and thus conclude that P = NP.

Exercise. We conclude this lecture with an exercise. We have defined 3-SAT
as the language of Boolean formulas in CNF that are satisfiable and have at
most 3 literals in each clause. Consider instead the language

EXACT-3-SAT = {φ | φ is a satisfiable Boolean formula in
CNF with exactly 3 literals per clause}.

90

Marco Calautti Notes of Computability and Computational Complexity

How would you adapt the reduction we used in Theorem 24 to show that
EXACT-3-SAT is NP−complete?

Alternatively, you could try reducing 3-SAT to EXACT-3-SAT, and only be
concerned about “enlarging” clauses with less than 3 literals.

91

Marco Calautti Notes of Computability and Computational Complexity

13 Some NP−complete languages

In this lecture we will prove more languages being NP−complete. As we are
going to see in the following lectures, the notion of NP−completeness is almost
ubiquitous in many different fields. That is, natural and important problems in
mathematics, computer science, optimization, graph theory, etc. turned out to
be NP−complete and thus believed to be intractable.

13.1 Independent set

The first language we consider is one we mentioned already some lectures ago,
i.e., the independent set problem.

Recall that given an undirected graph G = (V,E), an independent set of
G is a set of nodes S ⊆ V such that no two nodes in S are connected. The
language we want to study is thus:

IS = {(G, k) | G is an undirected graph
with an independent set S such that |S| ≥ k}.

Theorem 27. IS is NP−complete.

Proof. To prove the claim, we need to show that IS is in NP, and that it
is NP−hard. We have already shown that IS in NP in a previous lecture.
To prove that IS is NP−hard we provide a polynomial-time reduction from
EXACT-3-SAT to IS.

Our reduction must convert (in polynomial time) a Boolean formula φ with
exactly 3 literals per clause to a pair (G, k) of a graph and an integer in such
a way that: if φ is satisfiable, then G has an independent set with at least k
nodes, and if φ is unsatisfiable, G has no independent set with at least k nodes.

We describe our reduction by using an example Boolean formula. The gen-
eral construction should become immediately clear, after the example is given.
Consider the formula

φ = (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
C1

∧ (¬x1 ∨ x2 ∨ x4)︸ ︷︷ ︸
C2

∧ (¬x2 ∨ x3 ∨ x5)︸ ︷︷ ︸
C3

∧ (¬x3 ∨ ¬x4 ∨ ¬x5)︸ ︷︷ ︸
C4

.

We observe that there is some kind of correspondence between satisfying a
Boolean formula, and finding an independent set in a graph. In fact, to satisfy a
formula, we need to choose which literals become true and which false. Similarly,
to find an independent set, we need to choose which nodes are part of the
independent set, and which not. Moreover, we cannot make true or false one
literal and its negated at the same time.

So, in our reduction we represent this by assigning each occurrence of a literal
in φ to a node in the graph G. In particular, if a literal appears in different
clauses, we consider multiple nodes labelled with the same literal. With the
formula above, the nodes we have are:

92

Marco Calautti Notes of Computability and Computational Complexity

For convenience, we place the literals appearing together in a clause, close to
each other in the graph, and highlight these nodes with the name of the clause
where they belong.

To model the fact that we cannot give the same truth value to a literal and
its negation, we want in our graph to not be able to place in an independent set
two nodes labelled with complementary literals. Thus, we add an edge between
each pair of nodes labelled with complementary literals. The new edges are
drawn in red.

The next observation is that once one has chosen a truth assignment for the
literals in φ, this assignment satisfies φ if and only if each clause in φ becomes
true, which means, if m is the number of clauses of φ (in this case 4), our
assignment makes at least m literals true, one per each clause.

In the corresponding graph, then we must be sure that this satisfying assign-
ment corresponds to an independent set of at least m nodes. So, our reduction
sets k = m. However, although we now require an independent set of at least
m = 4 nodes, we can still pick as an independent set the three nodes of clause C1

plus the node x2 of the second clause. However, this choice does not correspond
to a satisfying assignment for φ, as the other clauses are left unsatisfied.

To force our independent sets to contain one literal per clause, we connect
each group of three literals in a triangle.

93

Marco Calautti Notes of Computability and Computational Complexity

In this way, if we want to construct an independent set with at least 4 nodes,
we must necessarily pick one node for each clause, and no two such nodes are
labeled with complementary literals. Actually, in the graph we can pick no more
than 4 nodes (one node per clause), so our independent sets contain exactly 4
nodes.

The above construction obviously performs in polynomial time w.r.t. the size
of φ since we simply copied the clauses. Moreover, the reduction adds 3 edges
for each clause, plus one edge for each pair of a variable and its negation, thus
overall it adds at most 3m + n edges, where m is the number of clauses and n
are all the literals appearing in φ. Finally, setting k = m is trivial.

We now prove that the above procedure is a reduction.

Assume φ is satisfiable, i.e., there is a truth assignment τ : {x1, . . . , xn} →
{true, false} of its variables that makes φ true. Thus, for each clause C of φ, at
least one literal of C is made true by τ . That is, there is at least one “reason”
(i.e., a true literal) for which the clause C is true. Let, for each clause C, ℓC

be one of such literals, and let v(ℓC) be the node in the graph corresponding to
ℓC . Then, the set of nodes

S = {v(ℓC) | C is a clause of φ}

is an independent set of the graph with k = m nodes.16 In fact, by construction,
|S| ≥ k, since we have picked one literal per clause. Now, note that for each
node v(ℓC) in S, the only nodes connected to it in the graph are the ones in its
own triangle, and the ones labelled with its complementary literal. However,
since we picked only one literal per clause, only one node of each triangle is in
S, and since τ is a truth assignment, there is no way we could have placed in S
two nodes labelled with complementary literals. Thus, S is an independent set.

Assume now that G has an independent set S, such that |S| ≥ k. Note that S
is suggesting how to build a truth assignment that satisfies φ. That is, consider
an assignment τ : {x1, . . . , xn} → {true, false} where, for each node in S with
label xi, τ(xi) = true, and for each node in S with label ¬xi, τ(xi) = false;
we do not care of how we assign the remaining variables. We have that τ is

16Intuitively, for each clause C of φ, the set S contains one of the “reasons” why the clause
C is true.

94

Marco Calautti Notes of Computability and Computational Complexity

well-defined (i.e., it assigns only one truth value to each variable), because there
are no two nodes in S that are labeled with complementary literals, and thus
τ does not assign two different values to the same variable. Moreover, since
S has at least k = m nodes, it must contain one node for each triangle. By
construction of τ , this means that each clause of φ has a literal that is made
true by τ . Hence, φ is satisfiable.

13.2 Vertex Cover

We now consider another problem over graphs. Consider an undirected graph
G = (V,E). A vertex cover of G is a set of nodes V C ⊆ V that “touches” all
edges of G, i.e., for each edge {u, v} ∈ E, V C contains either u or v, or even
both.

Consider the following undirected graph:

The set of nodes VC = {1, 3} is a vertex cover, as every edge of the graph is
“touched” by at least one node in VC. Trivially, also the complete set of nodes
{1, 2, 3, 4, 5} is a vertex cover.

Note that for a graph G, a vertex cover always exists, e.g. the one containing
all nodes of G. Thus, asking if a vertex cover exists is not a very interesting
question. The question is whether there is vertex cover with at most a certain
number of nodes.

This problem often appears in optimization contexts. For example, if the
edges of G represent corridors in a house, and nodes are where two or more
corridors join, a vertex cover represents a set of points in the house where we
can place a security camera in order to “see” all corridors of the house. Of
course, one wants to minimize the number of installed cameras, and thus we
want to know if a vertex cover of at most a certain size exists or not.

VCOVER = {(G, k) | G is an undirected graph
with a vertex cover V C such that |V C| ≤ k}.

We show that VCOVER isNP−complete. For this, we make an observation.
Consider the previous example graph and the vertex cover VC = {1, 3}. If we
consider the “complement” of VC, i.e., the set of nodes S = V \VC = {2, 4, 5},
we have that S is an independent set of the graph. We prove that this is not a
coincidence.

Lemma 1. Let G = (V,E) be an undirected graph, and S ⊆ V a set of nodes.
Then, S is an independent set of G iff V C = V \ S is a vertex cover of G.

95

Marco Calautti Notes of Computability and Computational Complexity

Proof. Let S be some set of nodes of G, and let V C = V \ S.
Assume that S is an independent set of G, but, towards a contradiction,

assume V C is not a vertex cover of G. Thus, there must be at least one edge
{u, v} ∈ E that is not covered by V C, i.e., neither u nor u appear in V C.
However, since S contains all nodes that are not in V C, means that both u
and v are in S. This, however implies that S is not independent, obtaining a
contradiction. Hence, V C is a vertex cover of G.

Assume now that V C is a vertex cover of G, but, towards a contradiction,
assume that S is not an independent set of G. If S is not independent, then,
there are at least two nodes u, v ∈ S connected by an edge, i.e., {u, v} ∈ E.
However, since V C contains all nodes that are not in S, neither u nor v appear
in V C. This, however implies that the edge {u, v} is not “covered” by V C,
and thus V C is not a vertex cover, obtaining a contradiction. Hence, S is an
independent set.

So, the above lemma says that the “complement” of an independent set
is a vertex cover, and vice versa. With this lemma, proving the following
NP−completeness is straightforward.

Theorem 28. VCOVER is NP−complete.

Proof. VCOVER is in NP, as we can easily devise a NTM that, given a graph G
and an integer k, first guesses a subset V C of V and then verifies that |V C| ≥ k
and that each edge in E is covered by V C.

To show that VCOVER is NP−hard we reduce IS to VCOVER. The re-
duction must convert a pair (G, k) to a pair (G′, k′) such that if G has an
independent set with at least k nodes, G′ has a vertex cover with at most k′

nodes, and vice versa.
The construction is very simple. We let G′ := G, and k′ = |V | − k. This is

clearly feasible in polynomial time.
Assume G has an independent set S with |S| ≥ k. Then, by Lemma 1,

V C = V \ S is a vertex cover of G (and thus of G′). Moreover, since |S| ≥ k,
|V C| = |V \ S| ≤ |V | − k = k′.

Similarly, if G′ has a vertex cover V C with |V C| ≤ k′, then, by Lemma 1,
S = V \ V C is an independent set of G′ (and thus of G). Moreover, since
|V C| ≤ k′, |S| = |V \ V C| ≥ |V | − k′ = k.

13.3 Clique

We now consider one last language. This is again a language over graphs.
Consider an undirected graph G = (V,E). A clique of G is a set of nodes C
that are all connected to each other with an edge, i.e., for each pair u, v of
distinct nodes of C, {u, v} ∈ E.

96

Marco Calautti Notes of Computability and Computational Complexity

Consider the undirected graph above. The set of nodes C1 = {1, 2, 4} is a clique.
Also the set C2 = {2, 3, 4} is a clique. However, the set {1, 2, 3, 4} is not a clique,
since the two distinct nodes 1 and 3 are not connected by an edge.

Note that an undirected graph G always has a clique: the empty set is
trivially a clique. Hence, asking whether G has a clique is not an interesting
question. Rather, we are interested in large cliques, i.e., with at least a certain
number of nodes.

Cliques are a very useful tool to model groups of friends in social networks.
Indeed, if the nodes of a graph represent people and an edge between two people
represent the fact that these two people are friends, a clique of a certain size is
a group of people that all know each other, i.e., a group of very close friends.

CLIQUE = {(G, k) | G is an undirected graph
with a clique C such that |C| ≥ k}.

To prove that CLIQUE is NP−hard we exploit the following observation:
an independent set in a graph G corresponds to a clique in the graph where we
“complement” the edges, and vice versa.

Definition 31. The complement of an undirected graph G = (V,E) is the graph
Ḡ = (V̄ , Ē), where V̄ = V , and

Ē = {{u, v} | u, v are distinct nodes of G such that {u, v} ̸∈ E}.

The above definition essentially says that the complement of an undirected
graph G is a graph Ḡ over the same nodes of G, such that two distinct nodes
u, v are adjacent in Ḡ iff they are not adjacent in G.

For example, the following graph is the complement of the graph we have
seen above.

97

Marco Calautti Notes of Computability and Computational Complexity

You can see that the set of nodes {1, 2, 4} is a clique in the original graph, but
it is an independent set in the complement. Vice versa, the set of nodes {1, 3}
is an independent set in the original graph, but it is a clique in the complement
graph.

Theorem 29. CLIQUE is NP−complete.

Proof. CLIQUE is clearly in NP, as given G and k, it is enough to guess at
most |V | nodes, and then verify that we guessed at least k nodes, and that all
pairs are connected.

The reduction is from IS. Given a pair (G, k), we construct (G′, k′), where
k′ := k and G′ := Ḡ is the complement of G. Constructing G′ requires copying
|V | nodes and adding at most |V |2 edges. Setting k′ = k is trivial. Hence, the
reduction is in polynomial time. We now show that the above procedure is a
reduction.

If G has an independent set S with at least k nodes, i.e., no two nodes in
S are connected, then in G′, necessarily all distinct pairs of nodes in S are
connected, and thus S is a clique with at least k = k′ nodes in G′.

Conversely, if G′ has a clique C with at least k′ nodes, i.e., all pairs of distinct
nodes in C are connected, then no pair of distinct nodes of C are connected in
G. Thus, C is an independent set with at least k′ = k nodes in G.

98

Marco Calautti Notes of Computability and Computational Complexity

14 More NP−complete languages

We keep exploring the intricate net of NP−complete languages. In this lecture
we will discuss a problem related to optimization, and another problem over
graphs.

14.1 Binary Integer Programming

The first language we consider regards the Binary Integer Programming prob-
lem. Assume you are given m× n integers aij ∈ Z and m integers bi ∈ Z. The
question we want to answer is: does the following system of linear inequalities

a11 · x1 + a12 · x2 + · · · a1n · xn ≤ b1

a21 · x1 + a22 · x2 + · · · a2n · xn ≤ b2
...

...
...

...
...

...
...

am1 · x1 + am2 · x2 + · · · amn · xn ≤ bm

have a solution with x1, . . . , xn ∈ {0, 1}?
The above is the same as saying, given a matrix A ∈ Zm×n and a vector

b̄ ∈ Zm, is there a vector x̄ ∈ {0, 1}n such that A · x̄ ≤ b̄?
The language we are going to focus on, then is:

BIP = {(A, b̄) | A ∈ Zm×n, b̄ ∈ Zm, and there is x̄ ∈ {0, 1}n such that A·x̄ ≤ b̄}.

Theorem 30. BIP is NP−complete.

Proof. To see that BIP is in NP, given A ∈ Zm×n and b̄ ∈ Zm, we can use a
NTM to guess a 0/1 value for each variable in x̄ = (x1, x2, . . . , xn), and check
that each inequality of the system A · x̄ ≤ b̄ is satisfied. The above operations
require n steps to guess x̄ and then m checks: one for each inequality. Checking
one inequality requires simple addition and multiplication of polynomially many
terms.

We now show that BIP is NP−hard by reducing EXACT-3-SAT to BIP in
polynomial time. For this, we need to convert a Boolean formula φ where each
clause has exactly 3 literals to a system of inequalities. The conversion must
be carried out in polynomial time, and φ is satisfiable iff the system admits a
solution in {0, 1}.

Again, to simplify the discussion, we present the reduction with an example,
and the general procedure will become clear, afterwards.

Consider the following Boolean formula:

φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x4).

Choosing a truth value for the Boolean variables in φ can be seen as choosing
a 0/1 value to the arithmetic variables of our system. So, for each Boolean
variable xi of φ, our system of inequalities will have a corresponding arithmetic

99

Marco Calautti Notes of Computability and Computational Complexity

variable, that we call yi, rather than xi, just to avoid confusion. In our example,
our system will have the arithmetic variables y1, y2, y3, y4. When a Boolean
variable xi is true, then we model this by setting the arithmetic variable yi = 1,
and when false, we use yi = 0.

To model the fact that a clause of φ must be true, i.e., at least one of its
literals is true, we use an inequality stating that the sum of its literals must be
at least 1. If a literal is a simple Boolean variable xi, we use the arithmetic
variable yi, if the literal is a negated variable ¬xi, then we use (1− yi) to invert
the value in yi. So, for example, the clause (x1 ∨ x2 ∨ ¬x3) corresponds to the
inequality

y1 + y2 + (1− y3) ≥ 1.

We do the above for all clauses of φ, obtaining the system:{
y1 + y2 + (1− y3) ≥ 1

(1− y2) + y3 + (1− y4) ≥ 1

Note that the above system is using the ≥ comparison and some constants are
still on the left-hand side, while instances of BIP are about inequalities with
≤ and only one constant on the right. This is easy to obtain. We move all
constants from left to right, changing their sign, and then multiply by -1 both
sides, obtaining an inequality using ≤. In our example, the final system is:{

−y1 − y2 + y3 ≤ 0

y2 − y3 + y4 ≤ 1

The reduction is clearly polynomial, as it constructs m inequalities, one for each
clause of φ and each inequality contains at most n+ 1 coefficients.

We now prove the above procedure is a reduction. For this, we use the first
form of inequalities using ≥ as a reference, as it is easier to argue about.

Assume φ is satisfiable, i.e., there is a truth assignment τ : {x1, . . . , xn} →
{true, false} assigning each Boolean variable of φ either true or false, such that
τ makes φ true. Then, consider the solution to our system where we set yi = 1
if τ(xi) = true, and set yi = 0 when τ(xi) = false.

Since τ satisfies φ, every clause has at least one true literal, thus at least
one of the three expressions summed on the left-hand side of the inequality
corresponding to the clause is at least 1. Since whatever arithmetic variable yi
we consider, yi or (1− yi) are always non-negative, the overall left-hand sum is
at least 1, and thus the inequality is satisfied. This holds for all clauses, and
thus all inequalities are satisfied.

Assume our system has a solution, i.e., there is an assignment to each arith-
metic variable yi to 0 or 1 that satisfies all inequalities. Consider the truth
assignment τ such that τ(xi) = true if the arithmetic variable yi is 1, and false,
otherwise. For an inequality to be satisfied, at least one of the 3 expressions
that are summed on its left-hand side must be 1. Thus, at least one literal of
the corresponding clause must be true, and thus the clause is true. This holds
for all inequalities, and thus all clauses are satisfied by τ .

100

Marco Calautti Notes of Computability and Computational Complexity

Remark. The more general integer programming (IP) problem is defined
in the same way as BIP, but the variables x1, . . . , xn can take values from
{0, 1, 2, 3, . . .}, and not just {0, 1}. BIP is a special case of IP, because the
fact that each variable xi must be in {0, 1} is just a different way of stating that
the inequalities xi ≥ 0 and xi ≤ 1 hold. Thus, we immediately conclude that
IP is also NP−hard (i.e., reduce BIP to IP by adding the inequalities xi ≥ 0
and xi ≤ 1, for each variable xi).

However, proving that IP is in NP is not as easy. The main problem is that
it is not clear how large is the number our NTM should guess for each variable
xi. In BIP, xi can only be 0 or 1, but in IP, variables in a solution could, in
principle, take arbitrarily large numbers that would even require exponentially
many bits (or double exponential, or even more, as there is no clear bound on
how many bits are needed). Thus, our NTM has no clear time bound, let alone
polynomial.

However, one can show that if a system of inequalities admits a solution
over the non-negative integers, then it admits a solution over the non-negative
integers where each xi is a number encoded with only polynomially many bits
(see “On the Complexity of Integer Programming”, 1981, Christos H. Papadim-
itriou). A consequence of this result is that our NTM can only focus on numbers
using polynomially many bits, and thus IP is in NP. We will not see the proof,
but just state the result.

Theorem 31. IP is NP−complete.

14.2 Vertex Coloring

The next language we consider is again over graphs. Given an undirected graph
G = (V,E) and an integer k, the question is whether we can color, using at
most k colors, each node of G in such a way that no two adjacent nodes end up
colored with the same color.

For example, if we have k = 3 colors, say red, green and blue, we can color
the graph below in the following way

where no two adjacent nodes have the same color. However, if we are given only
k = 2 colors, there is no way to color the above graph without coloring two
adjacent nodes with the same color.

We now formalize the notion of coloring.

101

Marco Calautti Notes of Computability and Computational Complexity

Definition 32. Consider an undirected graph G = (V,E) and an integer k. A
k-coloring of G is a function f : V → {1, 2, . . . , k}, assigning each node to a
color in {1, 2, . . . , k}, such that f(u) ̸= f(v), for each edge {u, v} ∈ E.

Our language is thus:

VCOL = {(G, k) | G is an undirected graph that admits a k-coloring}.

As an example application of VCOL, the nodes of G can be seen as Wireless
turrets in an area, and an edge between two turrets means that the turrets
are close enough to interfere with each other, if they broadcast with the same
frequency. The integer k represents the number of available frequencies a turret
can broadcast with. Deciding if a k-coloring exists means understanding whether
we can assign a frequency to each turret without causing interferences.

Theorem 32. VCOL is NP−complete.

Proof. To place VCOL in NP, we can guess a color in {1, 2, . . . , k}, for each
node, and then verify that no two nodes have the same color. Each color is a
number 1 ≤ i ≤ k, thus requires at most the same number of bits of k, and
we need to choose one color per node. So, the machine guesses a color for each
node in O(||k|| · n) steps, where ||k|| is the size in bits of k and n is the number
of nodes. Checking that chosen colors describe a k-coloring requires trying all
possible edges, i.e. in time O(|E|).

We now show that VCOL isNP−hard by reducing EXACT-3-SAT to VCOL.
We must convert a Boolean formula φ in CNF, where each clause has exactly 3
literals to a pair (G, k). Moreover, the construction must be polynomial, and φ
is satisfiable iff G admits a k-coloring.

We construct a pair (G, k) with k = 3 colors.

We first introduce in G three nodes, connected in a triangle, labeled T , F
and B, as shown below. In any 3-coloring of our graph, these three nodes will
have different colors. We will call the color that T will have in a 3-coloring as
the color “true”. Similarly, we call the color of node F “false”, and the color of
B “base”.

We represent each Boolean variable xi of φ with two nodes labeled with xi and
its negation ¬xi. We want that these two nodes only get assigned the “true”
or the “false” color, thus we connect them to the node B, forcing their color
to be either the one of node T or the one of node F . Moreover, since it is not
possible for a variable xi and its negation ¬xi to have the same truth value, we
also connect the nodes xi and ¬xi with an edge.

102

Marco Calautti Notes of Computability and Computational Complexity

So, with the current state of the graph, any 3-coloring will assign different
colors to each xi and its negation, and the only colors are the “true” or the
“false” color. So, a 3-coloring in the above graph essentially describes a truth
assignment of the Boolean variables of the formula φ.

Now, we need to model the fact that some literals make certain clauses true.
For this, we show how to model the OR of two literals. The OR operation is
simply a circuit that has two inputs and one output. We model this circuit with
the following triangle:

The right-most node represents the output of the OR. The left-most nodes are
the two inputs. If we want to compute the OR of, e.g., the literals x1, ¬x2, we
simply connect these two nodes to the input nodes of the circuit:

Note that if all two input literals are colored with “false”, then the right-most
node must be colored with “false”, since the two intermediate nodes must have
different colors, and both must be different than “false”. So, one intermediate

103

Marco Calautti Notes of Computability and Computational Complexity

node will be colored with “true” and the other with “base”. Hence, the only
available color remaining for the right-most node is “false”.

Moreover, if at least one of the two input literals is colored with “true”,
then there exists a way to color the output node with “true”. That is, for
just one of the “true” input nodes, color the intermediate node connected to it
with ”false” and the other intermediate node with the “base” color. Thus, the
right-most node must be colored with “true”.

Now that we have a way to simulate an OR between two literals, we can
simulate an OR between three literals (a clause) by combining two ORs in a
“Clause-gadget”:

where the nodes highlighted in blue are the input nodes, and the one highlighted
in green is the output node. The first triangle computes the OR of the first two
literals, and the second triangle computes the OR of the result of the first OR
with the third literal.

We can now complete our graph. For each clause of the Boolean formula
φ, we add one Clause-gadget, and each node corresponding to a literal of the
clause is connected to the input nodes of the Clause-gadget.

The only part remaining is to force each clause to be true. For this, we connect
the output node of each Clause-gadget to both the F and the B nodes. The
final graph is:

104

Marco Calautti Notes of Computability and Computational Complexity

Let n be the number of variables of φ and m the number of its clauses.
The above construction adds 3 nodes in the top triangle, 2n nodes (2 for each
variable), andm Clause-gadgets, each with 6 nodes. So, overall O(n+m) nodes.
Also the number of edges is polynomial.

We now prove the above procedure is a reduction.

Assume φ is satisfiable, i.e., there is a truth assignment τ : {x1, . . . , xn} →
{true, false} that makes every clause of φ true. Then, consider a coloring where
we color node T with “true”, F with “false” and B with “base”. Moreover, if
τ(xi) = true, we color node with label xi with “true” and ¬xi with “false”, and
vice versa. This is a valid 3-coloring, according to the left-part of the graph
G. Finally, since each clause in φ has at least one true literal because of τ ,
from the previous discussion on the Clause-gadgets, the output node of each
Clause-gadget can be 3-colored in such a way that the output node is colored
with “true”. Thus, overall, G has a 3-coloring.

Assume that G has a 3-coloring. By construction of G, nodes T , F and B
have three different colors. Let “true” be T ’s color and “false” F ’s color. Thus,
two nodes xi and ¬xi have different colors, and they can only be either “true”
or “false”. Moreover, if we consider one Clause-gadget, its output node must be
colored with “true” since this node is connected to F and B. This means that
at least one of the nodes connected to an input node of the Clause-gadget must
be colored with “true”. If this was not the case (i.e., they are all colored with
“false”), we said that the output node must be colored with “false”, which is
not the case. Thus, the colors given to each node labelled with some xi define
a truth assignment of the variables of φ that satisfy φ.

Remark. Note that our reduction always uses 3 colors, regardless of the shape
of φ. Thus, Vertex Coloring is NP−hard even if the number of colors k is not
part of the input, but it is implicitly assumed to be 3. That is, the language

3-VCOL = {G | G is an undirected graph admitting a 3-coloring}

is NP−complete.

105

Marco Calautti Notes of Computability and Computational Complexity

15 Alternative definition of NP

By now, you should have a good understanding of the complexity class NP,
and what are some of the hardest problems in the class. You should also have
noted that every time we had to place a language in NP, the story is always
the same. Given a string w, to verify whether w is in our language:

1. Guess some data on the tape, within polynomially many steps, and

2. check, within polynomially many steps, that what we guessed witnesses
the fact that w is in the language.

That is, what our NTM guesses is a certificate of the fact that w is indeed in the
language. For example, if we consider SAT, the certificate is a truth assignment
τ , and after guessing one, we simply need to check that it satisfies the input
Boolean formula φ. If such an assignment exists, the NTM will find it.

Another example is IS. Given as input a pair (G, k) our machine guesses a
set of nodes S of G, and then verifies that |S| ≥ k and S is an independent set.
The set S is our certificate.

In this lecture, we are going to show that the occurrence of this pattern, in the
context of NP languages, is not a coincidence, but rather, it is an alternative
way to characterize the complexity class NP. That is, although our current
definition of NP does not require our NTMs to follow this pattern, we are going
to see that any language in NP is characterized by certain kinds of certificates
that can be guessed in polynomial time, and verified in polynomial time.

First, we need to formalize what we mean that a language L can be charac-
terized by polynomially guessable and verifiable certificates. For this, we define
a “new” class that collects all such languages. We call this class PC (from
Polynomial and C ertificates); in what follows, we use {0, 1}≤n to denote the
set of all binary strings of length at most n, i.e., {0, 1}≤n =

⋃n
i=0{0, 1}i.

Definition 33. A language L ⊆ {0, 1}∗ is in the class PC if there exists a
polynomial p : N → N, and a polynomial-time (deterministic) TM M such that,
for every string w ∈ {0, 1}∗,

w ∈ L iff there is a string (a certificate) u ∈ {0, 1}≤p(|w|) such that M accepts (w, u).

So, intuitively, when a language L is in PC it means that the presence of
a string w in L is characterized by the existence of some “small” certificate
u (where, by small, we mean polynomial in |w|), that once given, allows a
deterministic TM to confirm that w is in the language, in polynomial time.
However, if w is not in the language, no such a certificate exists.

The above definition is very reminiscent of how the NTMs we devised for
our NP languages look like.

Example 8. Consider, for example, the independent set language:

IS = {(G, k) | G is an undirected graph with an independent set S with |S| ≥ k}.

106

Marco Calautti Notes of Computability and Computational Complexity

Our certificates are sets S of nodes of G. In fact, S is of size polynomial w.r.t.
the length of the encoding of (G, k), as S can contain at most n nodes, where n
is the number of nodes in G.

Our deterministic TMM confirming that a pair (G, k) is in IS takes as input
(G, k) and a certificate S, and simply verifies that S is an independent set of
G with at least k nodes. The latter can be carried out with polynomially many
steps.

Thus, if (G, k) ∈ IS, then a set S as defined above exists such that M accepts
(G, k, S). If, however, (G, k) ̸∈ IS, no such a certificate exists, i.e., for every
set S, the TM M will not accept (G, k, S).

So, in a sense, the above definition explicitly splits the two phases of our
Guess and check NTMs. The “guess” phase is modelled via certificates of poly-
nomial length, and the “check” is modelled by the (deterministic) TM M . Let
us consider another example.

Example 9. Consider the SAT language:

SAT = {φ | φ is a Boolean formula in CNF that is satisfiable}.

Let X = {x1, . . . , xn} be the Boolean variables of φ. Our certificates are truth
assignments τ : X → {true, false}. A truth assignment τ is clearly of polynomial
size w.r.t. the length of the encoding of φ, as we can encode τ as a string of bits,
where the bit in position i denotes the truth value given to variable xi. So, its
length is n.

Our deterministic TM M confirming that a formula φ is in SAT takes φ
and a truth assignment τ as input, and simply verifies that τ satisfies φ. The
latter can be obviously carried out with polynomially many steps.

As you might have now realized, the class PC is nothing else than NP.
That is, PC = NP. We now proceed to prove this result.

Theorem 33. PC = NP.

Proof. To prove that two sets are the same, it is enough to show that one is
included in the other, and vice versa. We start by showing that PC ⊆ NP. For
this, we must show that any language L ∈ PC is also in NP. Let L be some
language in PC, and let p : N → N be its polynomial and M its deterministic
TM. We now show that there exists an NTM M ′ that decides L in polynomial
time. Our machine has the following shape:

1. M ′ first guesses p(|w|) bits in a secondary tape, essentially constructing
a certificate u. Since p(|w|) ∈ O(|w|c), this phase requires polynomially
many steps.

107

Marco Calautti Notes of Computability and Computational Complexity

2. M ′ executes the control ofM with input w and u. SinceM is a polynomial-
time TM, M ′ requires polynomially many steps, overall.

We now show that M ′ decides L.
Assume that w ∈ L. Thus, since L ∈ PC, there exists u ∈ {0, 1}p(|w|) such

that M accepts (w, u). Thus, among all strings u that M ′ guesses, there is such
a string such that M accepts (w, u), and thus M ′ accepts w.

If, instead, w ̸∈ L, since L ∈ PC, for every string u ∈ {0, 1}p(|w|), M does
not accept (w, u). Since M is a polynomial-time TM, it actually means that
M rejects (w, u). Thus, whatever string u the NTM M ′ guesses, M will always
reject (w, u), and thus M ′ rejects w.

We now show that NP ⊆ PC. For this, we must show that any language
L ∈ NP is also in PC, i.e., any language L ∈ NP has “small”certificates that
can be verified in polynomial time.

Let L be a language in NP, and thus let ML be the NTM that decides L
in polynomial time. Note that by definition of NP, ML does not necessarily
follow the guess and check pattern, but can do anything, as far as it requires
polynomially many steps, and decides L. So, what are our certificates?

To answer this question, let us consider a string w = w1 · · ·wn, and let us
have a look at the computation tree of ML with input w.

Since ML requires polynomially many steps w.r.t. |w| in any of its computation
paths, there is a polynomial p1 : N → N such that p1(|w|) is the maximum
number of IDs in a computation path. Moreover, when moving from one ID to
the other, ML can only move the head of one cell. Thus, since ML performs at
most p1(|w|) steps in a path, the size of each ID is also polynomial w.r.t. |w|.
Hence, there is a polynomial p2 : N → N such that p2(|w|) is the maximum size
(in bits) of an ID.17

We conclude that a path

ID0ID1 · · · IDk

17The polynomial p2 is different, in principle, from p1, since to encode an ID, we also need
to store the state, besides the content of the tape.

108

Marco Calautti Notes of Computability and Computational Complexity

of the computation tree of ML with input w can be stored in p(|w|) = p1(|w|) ·
p2(|w|) bits, where p is a polynomial.

To show that L ∈ PC, we use, for a string w, the paths of the computation
tree of ML with input w as certificates.

What is left to discuss is the shape of the (deterministic) TM M that is in
charge of confirming, given w and a certificate u, whether w is in L. The TM
M is quite simple, as it only performs the following steps. Assume (w, u), where
w = w1 · · ·wn, and u = ID0, ID1, . . . , IDm, is the input to M :

1. Check that ID0 = q1w1 · · ·wn. If this is not the case, reject, otherwise
continue.

2. for each i := 0 to m− 1, do

(a) If IDi does not yeld IDi+1, according to the transition function of
ML, reject, otherwise continue.

3. If IDm contains the accepting state of ML, then accept, otherwise reject.

So, essentially M simply verifies that u encodes an accepting path of the com-
putation tree of ML with input w.

Step 1 clearly requires polynomially many steps, as it is enough to scan ID0,
which contains polynomially many bits, as discussed before.

The for loop requires m iterations, where m is the length of the path, which
is polynomial.

The “if” inside the for loop simply requires i) searching IDi for a state q
with a symbol α on the right (requiring at most |IDi| steps); ii) verify that
there is (q′, β, ∗) ∈ δ(q, α) such that IDi+1 is obtained from IDi by the rule
(q, α) → (q′, β, ∗), where ∗ ∈ {L,R, S}. The latter requires scanning δ which is
of constant size (i.e., it is independent of the size of w), and requires scanning
IDi+1 in at most |IDi+1| steps. Hence, everything is polynomial.

The last step is clearly polynomial as well.

It remains to show that L ∈ PC.
Assume w ∈ L. Then, the computation tree of ML with input w has a path

ending in an accepting state. Thus, this path is a certificate u such that the
TM M discussed above accepts (w, u).

If, instead, w ̸∈ L, every path of the computation tree of ML with input w
is rejecting. Thus, every certificate (i.e., path) u is such that the TM M rejects
(w, u). Thus, there is no certificate u such that M accepts (w, u).

Remark. With the above theorem we have shown that the complexity
class NP has an alternative definition, in terms of certificates. This is not
only interesting on its own right, as it provides an alternative tool for placing a
language in NP (i.e., just explain what your certificates are, and devise a TM
that confirms the inputs string w together with the certificate), but also gives
some more insights on why most researchers believe that P ̸= NP (besides the
fact that after half a century, no polynomial-time algorithm is known yet, for
any of the known NP−complete languages).

109

Marco Calautti Notes of Computability and Computational Complexity

Citing the “Philosophical Argument” by Scott Aaronson.18

“If P = NP, then the world would be a profoundly different place than we
usually assume it to be. There would be no special value in ’creative leaps’, no
fundamental gap between solving a problem and recognizing the
solution once its found. Everyone who could appreciate a symphony would
be Mozart; everyone who could follow a step-by-step argument would be Gauss;
everyone who could recognize a good investment strategy would be Warren
Buffett. Its possible to put the point in Darwinian terms: if this is the sort of
universe we inhabited, why wouldnt we already have evolved to take advantage
of it? [...]”

18https://www.scottaaronson.com/blog/?p=122

110

https://www.scottaaronson.com/blog/?p=122

Marco Calautti Notes of Computability and Computational Complexity

16 Cook’s Theorem

Some lectures ago, I promised that at some point, we would finally prove that
SAT is NP−complete. Indeed, all NP−hardness results we proved up to this
point heavily rely on the assumption that SAT is NP−complete. We have seen
that knowing that at least one language (e.g., SAT) isNP−complete can greatly
help in the process of proving that other languages are NP−complete.

However, it is now time to add this missing part to our discussion. The main
challenge of proving that SAT is NP−complete clearly lies in the proof of its
NP−hardness, as we cannot now rely on any known NP−hard language, be-
cause there are no such languages yet, if we do not prove that SAT is NP−hard!

So, the only way we have for proving that SAT is NP−hard is by using the
definition. That is, we must prove that every language in NP reduces to SAT
in polynomial time.

Let us recall, once again, the definition of SAT, and make some observation.

SAT = {φ | φ is a Boolean formula in CNF that is satisfiable}.
Recall that a Boolean formula φ is in CNF (conjunctive normal form) if it is of
the form

φ = C1 ∧ C2 ∧ · · · ∧ Cm,

where each Ci is a disjunction of literals (i.e., variables and/or their negations).
Recall also that in SAT, we do not assume any bound on the number of literals
in a clause, like we do for 3-SAT, or EXACT-3-SAT. So, clauses can have an
arbitrary number of literals.

Finally, we recall that an implication A → B is just a shorthand for the
formula ¬A ∨B. We will use this fact in the proof.

Theorem 34 (Cook’s Theorem). SAT is NP−complete.

Proof

We have already shown that SAT is in NP. Let us focus on the hardness. We
have to show that every language L ∈ NP reduces to SAT in polynomial time.
So, for each language L ∈ NP, we must show that there exists a reduction TL
that converts strings w to Boolean formulas φ in such a way that w ∈ L iff φ
is satisfiable. Moreover, the procedure must require no more than polynomially
many steps. Consider some arbitrary language L ∈ NP, and let

M = (Q,Σ,Γ, δ, q1, qaccept, qreject)

be the NTM that decides L in polynomial time.

Observations

To convert a string w to a Boolean formula φ, we first make some observations
on the paths and the number of cells used in the computation tree of M with
input w = w1 · · ·wn.

111

Marco Calautti Notes of Computability and Computational Complexity

Length of a path. The length of a path in the tree is at most p(n), where
p : N → N is some polynomial.

Since different paths can have different lengths (but all bounded by p(n)), to
simplify the discussion, we focus on a modified version of the tree, where each
path that has length less than p(n) is extended by connecting the leaf ID of the
path to a copy of itself, until the path is of length p(n).

Remark. Note that this is not the computation tree of M with input w, but we
can treat it as such. In fact, there is a strong connection between the two: if a
path ending in qaccept exists in the computation tree of M , then a path ending
in qaccept also exists in this new tree. Moreover, if all paths end in qreject, also
all paths of the new tree end in qreject.

So, you can see the new tree as the one representing the computation of M
with input w with the additional condition that once M reaches qaccept (resp.,
qreject), if the length of the path where this happens is less than p(n), then M
“waits” in qaccept (resp., qreject) for the remaining time.

Number of cells. Regarding the number of cells that the TM M can visit,
this is at most p(n), because from one ID to the next, the head can only move
to one cell at the time.

112

Marco Calautti Notes of Computability and Computational Complexity

The size of an ID is larger than p(n), because we also store the state, pointing
to the current cell. Nonetheless, if we just focus on the cells visited, they are
indeed at most p(n).

So, to perform its computation, M does not really need an infinite tape, but
only a finite tape of adequate size. The question is, what is the adequate size?

The adequate size would be p(n) cells. However, since M ’s head can move both
to the right and to the left, part of the p(n) visited cells could be, for example,
on the right of the initial position, and the rest on the left. So, if we allocate
p(n) cells, in order for M to have the correct amount of space on the right and
the left, we should also know where to exactly place the input string, so to let
M have enough space in both directions.

To avoid this issue, we can simply allocate double the space, i.e., 2 · p(n)
cells, and let the input string start from the middle cell of the tape, as shown
in the picture below. In this way, in the worst case, if M always moves to the
right, or always moves to the left, there will be enough cells.

So, we can assume M works on a finite tape with 2 · p(n) cells, where the input
string starts from the middle cell and the head points to the middle cell.

Representing an ID. Our last observation is that an ID is essentially the
combination of three elements: a tape with 2 · p(n) cells, the current state, and
the position of the head on the tape. Although we usually encode these three
informations all together in the ID string, for the proof, we find more convenient
to keep these three elements separated. So, every path in our modified tree can
be visualized as in the picture below, where each step is represented by three
elements: the finite tape, the current state, and the head position.

113

Marco Calautti Notes of Computability and Computational Complexity

We number the cells of the finite tape from −p(n) + 1 to p(n), where cell 1
is the middle cell. We also number the different steps in a path from 1 to p(n)
(recall that in the modified tree, every path is of length p(n)). We use the letter
i for the step number, and the letter j for the cell number. We now proceed
with our proof.

The formula φ

The main goal is to construct a Boolean formula φ in such a way that every
truth assignment that satisfies φ describes a path in our modified tree that ends
in an accepting state. So, if such a path exists, a truth assignment satisfying φ
exists, and if no such a path exists, every truth assignment makes the formula
φ false.

Boolean variables. We want, with the Boolean variables of φ, to describe
the computation of M with input w on a generic path of the modified tree. So,
we need to keep track of which is the state at a certain step i, also what is the
position of the head at step i, and what is the content of the finite tape at step
i. For this, we use the following sets of variables.

1. Current state. For each step 1 ≤ i ≤ p(n), and for each state q ∈ Q, we
introduce the variable

qi.

Intuitively, if the variable qi is true, this represents the fact that at step
i, the current state is q.

2. Head position. For each step 1 ≤ i ≤ p(n), and each cell position
−p(n) < j ≤ p(n), we introduce the variable

hi,j .

Intuitively, if hi,j is true, it means that at step i, the head of M is posi-
tioned on cell number j.

114

Marco Calautti Notes of Computability and Computational Complexity

3. Content of each cell. For each step 1 ≤ i ≤ p(n), each cell position
−p(n) < j ≤ p(n), and each symbol of the alphabet α ∈ Γ, we use the
variable

αi,j .

Intuitively, if αi,j is true, it means that at step i, the cell number j contains
the symbol α.

4. Unchanged cells. We introduce one last set of variables. These variables
will be useful when representing the transition of M from one step to the
other. In particular, for each step 1 ≤ i ≤ p(n)− 1, and each cell number
−p(n) < j ≤ p(n), we introduce the variable

ui,j .

Intuitively, if ui,j is true, it means that when M transitions from step i
to i+ 1, the content of cell j remains unchanged. This happens when the
head is not positioned on cell j and thus, its value is kept as is in the next
step.

Note that we are using |Q| ·p(n) variables for the states, p(n) ·2p(n) variables
for the head position, |Γ| · p(n) · 2p(n) variables for the cells content, and finally
(p(n)− 1) · 2p(n) variables for the unchanged cells. Hence, polynomial.

Now, it is time to use the above variables to describe the computation of M
on input w. For this, we introduce different sets of Boolean expressions that,
when ANDed (∧) together, will form the formula φ. Each set of expressions is
dedicated to model a specific property of the computation of M with input w.

Consistency. First of all, note that, for example, nothing prevents that two
variables αi,j and βi,j are both true in a satisfying truth assignment, with
α, β ∈ Γ. This, however, should not be allowed, as this would represent the fact
that at step i, cell j contains both α and β. Similarly, for example, we might
have that all variables of the form qi are false, implying that at step i there is
no state. So, our formula φ must prevent such things, and force every truth
assignment satisfying φ to be consistent.

1. M is in exactly one state, in each step. First, we introduce p(n)
expressions, one for each step i, to assure that at least one state is the
current state at step i: ∨

q∈Q

qi.

Then, we introduce p(n) · |Q| expressions, one for each combination of step
i and state q, to assure that if the current state in step i is q, no other
state can be the current state:19

qi →
∧

q̂∈Q\{q}

¬q̂i.

19Recall that an implication A → B is just the formula ¬A ∨B.

115

Marco Calautti Notes of Computability and Computational Complexity

The above are polynomially many expressions, and each contain polyno-
mially many variables.

2. M ’s head is on exactly one cell, in each step. First, we introduce
p(n) expressions, one for each step i, to assure that the head of M must
point to some cell, when in step i:∨

−p(n)<j≤p(n)

hi,j .

Then, we introduce p(n) · 2p(n) expressions, one for each combination of
step i and cell number j, to assure that if the head of M is on cell j, when
in step i, then, no other cell has the head on it, in the same step.

hi,j →
∧
k ̸=j

¬hi,k.

Also here, the number of expressions is polynomial, and they contain
polynomially many variables.

3. Each cell in M ’s tape contains exactly one symbol. First, we
introduce p(n) · 2p(n) expressions, one for each combination of step i and
cell number j, to assure that the cell j contains at least a symbol, when
in step i: ∨

α∈Γ

αi,j .

Then, we introduce p(n) · 2p(n) · |Γ| expressions, one for each combination
of step i, cell number j, and tape symbol α ∈ Γ to assure that if cell j
contains the symbol α, when in step i, then no other symbol can occur in
cell j, in the same step:

αi,j →
∧

β∈Γ\{α}

¬βi,j .

Also here, the number of expressions and their size is polynomial.

4. Cells that are unchanged from one step to the next must keep
the same value. We introduce (p(n)− 1) · 2p(n) · |Γ| expressions, one for
each combination of step 1 ≤ i ≤ p(n)−1, cell number j, and tape symbol
α ∈ Γ, to assure that if cell j contains the symbol α, when in step i, and
this cell is unchanged in the next step, then cell j contains the symbol α,
also in the next step:

αi,j ∧ ui,j → αi+1,j .

Also here, the variables are polynomial.

If we put in AND (∧) all the expressions described in Items 1,2,3,4 above,
we obtain the expression

Cons.

The presence of Cons in φ guarantees that every truth assignment that satisfies
φ must assign truth values to our variables in a consistent way.

116

Marco Calautti Notes of Computability and Computational Complexity

Initial ID. We now need to force a truth assignment satisfying φ to state that
at step 1, the current state is q1, the head is on cell 1, and the tape contains the
string w = w1 · · ·wn surrounded by blanks. For this, we need one expression:

Init =

q11 ∧ h1,1 ∧ ⊔1,−p(n)+1 ∧ · · · ∧ ⊔1,0︸ ︷︷ ︸
p(n) blanks before w

∧w1,1
1 ∧ w1,2

2 · · · ∧ w1,n
n︸ ︷︷ ︸

The string w

∧⊔1,n+1 ∧ · · · ∧ ⊔1,p(n)︸ ︷︷ ︸
p(n)−n blanks after w

.

The expression contains 2 · p(n) variables plus two variables (state and head
position). Hence, a polynomial number.

Transitions. We now model the fact that M transitions from one step to the
other. Remember that M is non-deterministic, and thus, it might decide to
transition to one of many possible new IDs. The choice of one next ID or the
other will depend on the truth assignment of our variables.

For each step 1 ≤ i ≤ p(n)− 1, each cell number j that is not the far-left or
the far-right cell, and each pair (q, α) of a state q and symbol α ∈ Γ, assuming
that, for example, δ(q, α) = {(q̂1, β, L), (q̂2, γ, R)}, we introduce the expression:

qi ∧ hi,j ∧ αi,j →
∧
ℓ ̸=j

ui,ℓ∧

 (q̂i+1
1 ∧ hi+1,j−1 ∧ βi+1,j)︸ ︷︷ ︸

Choice 1

∨ (q̂i+1
2 ∧ hi+1,j+1 ∧ γi+1,j)︸ ︷︷ ︸

Choice 2

 .

Intuitively, the expression says that if at step i, the current state is q, the head
is on cell j, and the symbol on cell j is α, then

• Every cell that is not j remains unchanged in the next step i+ 1, and

• at the next step i+ 1, either q̂1 is the new state, the head is on cell j − 1,
and the cell j contains β, or q̂2 is the new state, the head is on cell j + 1,
and the cell j contains γ.

If the transition δ(q, α) contains more choices, it should be now clear how we
map them in an expression like the one above.

There is one last kind of transition to be modeled, which is the fake transition
that “waits” in the accepting/rejecting state, until the very last step. For this,
it is like we have, for each symbol α ∈ Γ, the (not properly valid) transitions
δ(qaccept, α) = (qaccept, α, S) and δ(qreject, α) = (qreject, α, S). Then, we model
these transitions in the way we described above. If we put in AND (∧) all the
expressions we discussed, we obtain the expression

Trans.

The total number of expressions in Trans is polynomial.

117

Marco Calautti Notes of Computability and Computational Complexity

Remark. Note that we only consider the “internal” cells of the tape (i.e., we
exclude the first and the last), since onceM reaches those cells, it will not move
anymore, as it exhausted all steps.

Moreover, note that the non-deterministic choice of a transition in δ(q, α) is
modelled with the OR (∨) on the right-hand side of the expression above. That
is, if a truth assignment chooses to make q̂i+1

1 , hi+1,j−1, and βi+1,j true, this
models the fact that M chooses the first transition.

Acceptance. There is one last part we need to model: we want that the last
step (i.e., step p(n)) has the accepting state, i.e., M accepts w. This can be
done with the simple expression:

Accept = q
p(n)
accept.

Thus, our final formula will be

φ = Cons ∧ Init ∧ Trans ∧ Accept.

It should be hopefully clear that if w ∈ L (i.e., M accepts w), then φ is
satisfiable, and if w ̸∈ L (i.e., M rejects w), then φ is not satisfiable. □

16.1 Some remarks on the proof

We now clarify why it is so important to focus on the modified computation
tree of M , where each path is of the same length p(n).

Assume M rejects w, i.e., all paths in its original computation tree end in
qreject. Now, all such paths can be of different lengths. We would expect that
every truth assignment τ does not satisfy our formula φ.

However, if τ represents the choices made by M that follow a path of length
k < p(n), then, since M actually does not transition from qreject to another
state in its original transition function, the value of the Boolean variables
qk+1, qk+2, . . . , qp(n), for each q ∈ Q, regarding the current state at steps af-
ter k, do not depend on the values that τ assigns to the variables regarding
steps up to k.

Thus, τ can, for example assign false to

qk+1, qk+2, . . . , qp(n),

for each state q ∈ Q \ {qaccept}, and true to

qk+1
accept, q

k+2
accept, . . . , q

p(n)
accept.

Thus, we make the expressions in Trans regarding steps k+1, k+2, . . . , p(n)−1
trivially true, as their left-hand side (which only contains states different from
qaccept and qreject) becomes false. Hence, τ satisfies Cons, Init, Trans, and also
Accept, i.e., τ satisfies φ, but M rejects w!

118

Marco Calautti Notes of Computability and Computational Complexity

As a final comment, we note that in our proof, the Boolean formula φ we
constructed is not in CNF. In fact, φ is the conjunction of different expressions.
The expression Init is a conjunction of clauses, each with only one literal, and
thus it is fine as it is. The same for Accept, which is a simple clause with one
literal. However, Cons and Trans are not conjunctions of clauses.

To complete the proof, we should prove that Cons and Trans can be rewritten
as conjunctions of clauses, in time polynomial w.r.t. |w| = n. We leave the latter
task as an exercise.

As a hint on how to do it, note that each expression in Cons and Trans is
either already a disjunction of literals, like∨

q∈Q

qi,

and thus we do not need to change it, or it is an implication. For example, like

qi ∧ hi,j ∧ αi,j →
∧
ℓ ̸=j

ui,ℓ∧

(
(q̂i+1

1 ∧ hi+1,j−1 ∧ βi+1,j) ∨ (q̂i+1
2 ∧ hi+1,j+1 ∧ γi+1,j)

)
.

To convert an implication to a conjunction of clauses, you can use the following
properties of Boolean formulas.

1. (A1 ∧ · · · ∧An) ∨ (B1 ∧ · · · ∧Bm) is equivalent to

(A1 ∨B1) ∧ (A1 ∨B2) ∧ · · · ∧ (A1 ∨Bm) ∧ (A2 ∨B1) ∧ · · · ∧ (An ∨Bm),

by distributivity;

2. ¬(A1 ∧ · · · ∧An) is equivalent to ¬A1 ∨ · · · ∨ ¬An (De Morgan’s law);

3. ϕ→ ψ is equivalent to ¬ϕ ∨ ψ;

4. ϕ→ ψ1 ∧ ψ2 is equivalent to (ϕ→ ψ1) ∧ (ϕ→ ψ2);

For example, the implication

A ∧B → (C ∧D) ∨ (E ∧ F),

by rule 1, becomes

A ∧B → (C ∨ E) ∧ (C ∨ F) ∧ (D ∨ E) ∧ (D ∨ F),

which, by rule 4, becomes

(A ∧B → C ∨ E) ∧ (A ∧B → C ∨ F) ∧ (A ∧B → D ∨ E) ∧ (A ∧B → D ∨ F),

which, by rules 2 and 3, becomes

(¬A∨¬B∨C∨E)∧(¬A∨¬B∨C∨F)∧(¬A∨¬B∨D∨E)∧(¬A∨¬B∨D∨F).

119

Marco Calautti Notes of Computability and Computational Complexity

17 Complements of NP languages and other time
classes

In this lecture, we discuss about the asymmetry between languages in NP and
their complements, which is similar in spirit to the asymmetry we experienced
for RE languages and their complements. We discuss what we know about the
relationship between NP languages and their complements, and then briefly
discuss higher time complexity classes.

17.1 coNP

We have seen in previous lectures that the class NP can be defined in different,
equivalent ways. One of them is that a language L is in NP if membership of a
string w in L is witnessed by the existence of a “small” certificate that can be
verified in polynomial time. In terms of NTMs, this means that there is a NTM
M , requiring polynomially many steps, such that with input w, w ∈ L iff there
exists a path in the computation tree M that ends in the accepting state.

Consider now the following language, which is the complement of SAT:

UNSAT = {φ | φ is a Boolean formula in CNF that is not satisfiable}.

Could you prove that UNSAT is in NP? What should we guess first, to verify
that an input formula φ is in UNSAT?

The common mistake is to devise the following NTM:

1. Guess a truth assignment τ for the variables in φ;

2. Check that τ does not satisfy φ, in which case accept, otherwise reject.

However, the NTM above does not decide UNSAT. To understand why, let us
have a look at the computation tree of the machine, with input a formula φ.

120

Marco Calautti Notes of Computability and Computational Complexity

Assume φ is not satisfiable (i.e., every truth assignment makes φ false), then,
clearly, any path of the computation tree would lead to the accepting state, and
thus our machine accepts φ. However, if φ is satisfiable, this does not mean
that every truth assignment satisfies φ, it can very well be the case that some
truth assignments satisfy φ, but others do not. Then, some paths correspond to
a truth assignment that does not satisfy φ, (i.e., the end state is the accepting
state) and others correspond to truth assignments that satisfy φ (i.e., the end
state is the rejecting state). Hence, our NTM is still accepting φ, although it
should reject.

Remark. The reason why the above procedure does not work, is because what
our NTM is guessing is not a certificate for answering “yes”, rather, a certificate
for answering “No”. Another way to see it is that the (wrong) procedure we
discussed above is essentially the procedure we use to decide SAT, where we
swap qaccept with qreject.

However, in the same way as this does not work for languages in RE and their
complements, this does not work for languages in NP and their complements,
as acceptance and rejection in a NTM are defined in an asymmetric way: there
must exist at least one accepting path to accept, but all paths must be rejecting
to reject.

So, in which class does UNSAT belong to? To answer this question, we
define the following complexity class

Definition 34.
coNP = {L | L̄ ∈ NP}.

So, coNP collects all the languages whose complement is in NP. For ex-
ample, the complement of UNSAT is SAT. Since SAT is in NP, we conclude
that UNSAT is in coNP.

Remark. Note that coNP is not the complement of NP, i.e., coNP does not
contain every language that is not in NP. Rather, coNP contains the comple-
ments of NP languages. This makes a huge difference. In fact, if a language is
in the complement of NP, it necessarily cannot be in NP, by definition. How-
ever, there can be languages that are both in NP and coNP, as we will see
later in this lecture.

One question that arises is whether this asymmetry between NP and coNP
is real, or languages in NP and their complements have actually the exact same
complexity. In other words, do we know whether

NP = coNP?

It turns out that this is yet another question for which we do not have an
answer yet. However, NP−completeness can help us, once again, to identify
some ways of tackling the above question.

Theorem 35. NP = coNP iff there is an NP−complete language that is also
in coNP.

121

Marco Calautti Notes of Computability and Computational Complexity

Proof. We first prove the left to right direction of the equivalence. Assume
NP = coNP. Since NP−complete languages are just special NP languages,
they clearly must belong to coNP, under the assumption that NP = coNP.

We now prove the other direction. Assume that L is NP−complete and also
that L ∈ coNP. The latter means that L̄ ∈ NP. This fact is highlighted in the
following picture:

We prove that under the above assumption, NP = coNP. We do this by
showing that NP ⊆ coNP and coNP ⊆ NP.

To prove that NP ⊆ coNP, consider some arbitrary language L′ in NP. We
show that L′ is also in coNP. Since L is NP−complete, and thus NP−hard,
there is a polynomial time reduction T from L′ to L. This fact is shown in the
picture below:

Note that the complement of L′, denoted L̄′, is in coNP, because L′ is in
NP. Then, since for both L̄′ and L̄, “yes” and “no” instances are inverted, the
reduction T is also a reduction from L̄′ to L̄. This is shown in the picture below:

Now, let M be the NTM that decides L̄ in polynomial time (it exists, because
we assumed L is in coNP, and thus its complement is in NP). Then, if we
combine the reduction T from L̄′ to L̄, and the machine M :

122

Marco Calautti Notes of Computability and Computational Complexity

we obtain a NTM M ′ that decides L̄′ in polynomial time. Thus, L̄′ is in NP,
which implies its complement L′ is in coNP. Hence, the language L′ not only
is in NP but it is also in coNP.

To prove that coNP ⊆ NP, consider some arbitrary language L̄′ in coNP,
as shown in the previous picture. We show that L̄′ is also in NP. As already
discussed, there is a reduction T from L̄′ to L̄, as shown in the previous picture.
Then, if we combine T with the NTM M deciding L̄ in polynomial time, as we
did before, we obtain a NTM M ′ deciding L̄′ in polynomial time. Hence, L̄′ not
only is in coNP, but also in NP.

So, the above theorem tells us that if NP = coNP, then we could prove it
by showing that an NP−complete language is in coNP. To date, no one has
been able to show one single NP−complete language to also be in coNP. This
is one of the main reasons why most believe that NP ̸= coNP.

However, there can be NP languages that are also in coNP (and thus,
unlikely to be NP−complete). As an example, every language that is decidable
in polynomial time is in NP ∩ coNP.

Theorem 36. P ⊆ NP ∩ coNP.

Proof. Let L be a language in P. Since P ⊆ NP, L ∈ NP. Consider now the
complement of L, i.e., the language L̄. The complement L̄ of every language
L ∈ P is also in P. Indeed, if M is the DTM that decides L in polynomial
time, the machine M ′ where qaccept and qreject are swapped, decides L̄. But, if
L̄ ∈ P, then L̄ ∈ NP. But, if the complement of L is in NP, by definition of
coNP, it means that L ∈ coNP.

Remark. Note that if we combine Theorem 35 and Theorem 36 above, we
immediately conclude that if P = NP, then NP = coNP. In fact, we know
that if P = NP, then there is an NP−complete language L that is in P.
By Theorem 36, L is also in coNP. Thus, by Theorem 35, since L is both
NP−complete and in coNP, we conclude NP = coNP.

However, the opposite does not hold, i.e., NP = coNP does not imply that
P = NP.

We continue by observing that there are also languages that are in NP ∩
coNP, which we have not been able to prove are also in P. They are somehow
in a “limbo” between P languages and NP−complete languages. One such an
example is the language

FACTOR = {(N, k) | N is a natural number that has a prime factor M ≤ k}.

123

Marco Calautti Notes of Computability and Computational Complexity

The above is essentially the decision version of the problem asking which are
the prime factors of N .

For example, the string (175, 6) is in FACTOR, because 175 can be factored
to 5 ·5 ·7, where 5 and 7 are its prime factors, and 5 is less then 6. On the other
hand, (175, 4) is not in FACTOR, since none of the prime factors of 175 is less
or equal than 4.

Theorem 37. FACTOR ∈ NP ∩ coNP

Proof. FACTOR is in NP, since to verify that a pair (N, k) is in FACTOR, we
can guess a number M encoded in binary, and then verify that:

1. M ≤ k;

2. M is prime;

3. M divides N .

Note that M must be less or equal than k, thus, to guess M we can guess at
most the same number of bits used to encode k. Hence. ||M || is linear in the
size of the input (N, k).

Verifying M ≤ k is clearly in polynomial time, and also checking if M is
prime can be performed in polynomial time, since PRIME is in P. Item 3 is
also easy.

The above procedure is correct, because if a prime factorM ≤ k of N exists,
the above non-deterministic procedure will find it, and accept. If it does not
exist, all computation paths in the computation tree will reject.

However, FACTOR is also in coNP. To prove this, we need to show that
its complement is in NP. The complement of FACTOR is:

FACTOR = {(N, k) | N is a natural number and

every prime factor M of N is such that M > k}.

How do we verify that (N, k) is in FACTOR (or, equivalently, that it is not in
FACTOR)?

We cannot guess a number M , and check that M > k and M is prime. The
reason for this is that, even if N has a prime factor M > k, this does not mean
that N has no other prime factors M ′ ≤ k. So, M is not a certificate of the fact
that (N, k) ∈ FACTOR.

What we should do is to guess a factorization of N , i.e., a sequence of (not
necessarily distinct) prime numbers that when multiplied, give N . To do this,
we can guess a list of numbers 2 ≤ M1, . . . ,Mn ≤ N , and then verify the
following:

1. M1, . . . ,Mn are all primes;

2.
∏n

i=1Mi = N ;

3. each Mi is strictly greater than k.

124

Marco Calautti Notes of Computability and Computational Complexity

Since the factorization of a natural number N is unique, if we ignore the
order in which we enumerate the numbers therein, once Items 1 and 2 have
been verified, we are certain that if each Mi > k, this necessarily means that N
has no prime factor less or equal than k.

Assume m = ||N || is the number of bits used to encode N . Then, note that
each number Mi requires at most m bits. Moreover, if we consider how many
factors we need to guess, the worst case is when N is the largest number using
m bits, i.e., N = 2m − 1, and each Mi is the smallest prime (i.e., 2). Thus, we
need to guess at most n = m prime factors M1, . . . ,Mn. Thus, our certificate is
of polynomial size w.r.t. the input string (N, k). Finally, checking Items 1,2, and
3 can be clearly performed in polynomial time. Thus, FACTOR ∈ coNP.

Most researchers believe FACTOR is not in P, and since it is in bothNP and
coNP it is also unlikely to be NP−complete, by Theorem 35. The belief that
FACTOR is intractable is strong to the point that most of modern cryptography
is designed in such a way that finding the cryptographic keys of a communication
channel is equivalent to factorize a number N . Thus, finding the keys is believed
to be unfeasible, for very large numbers, as far as FACTOR is not found to be
P (which we find unlikely).

17.2 EXP and NEXP

Other complexity classes that are analogous to P and NP exist, that deal with
higher time resource usage. We will not go into the details of these classes,
rather just define them here.

Definition 35. The class of exponential time and non-deterministic exponen-
tial time languages are respectively

EXP =
⋃
c≥1

DTIME(2n
c

),

NEXP =
⋃
c≥1

NTIME(2n
c

).

So, the above are the analogous of P and NP, where exponential time is
required to decide the languages. Clearly, EXP ⊆ NEXP, by definition. It
is also not difficult to verify that NP ⊆ EXP, since we have already shown
that a non-deterministic TM can be rewritten to a deterministic TM with an
exponential overhead. To see why coNP ⊆ EXP, consider a language L ∈
coNP. It means that L̄ ∈ NP, and hence L̄ ∈ EXP. If M is the deterministic
TM that decides L̄ in exponential time, then the machine M ′ where we invert
qaccept and qreject accepts L.

Note that the above trick of inverting the ending states works because the
machine M is deterministic.

We can finally draw the picture of the complexity classes we discussed, in
the way we believe are related (e.g., if a class strictly includes another in the

125

Marco Calautti Notes of Computability and Computational Complexity

picture below, this means we believe the super class stricly includes the lower
class).

In the picture above we have also included coNP−complete languages. We
do not deal with such languages, but their definition is similar to the one of
NP−complete languages: a language is coNP−complete if it is in coNP, and
every language in coNP reduces to it in polynomial time. UNSAT is an example
of a coNP−complete language.

Home work. Prove that for every NP−complete language L, its complement
L̄ is coNP−complete.

126

Marco Calautti Notes of Computability and Computational Complexity

18 Space Complexity, and the classes LOGSPACE
and NL

Up to this point, we were mainly concerned with time constrained languages,
i.e., languages that can be decided within a certain number of steps by a TM.
Another dimension to consider, however, is the space required by the TM.

In this part of our lectures, we will move our focus on languages that can be
decided by TMs that require no more than a given amount of space.

In order to formally discuss these languages, we first need to clarify what we
mean by the “space required” by a TM, in a way similar to what we did when
we defined the notion of “time required” by a TM. To even do this, we need to
describe the kind of TMs we consider.

We already anticipated, when defining reductions, that when we want to
precisely analyse the space employed by a TM during its computation, it is a
good idea to separate this space from the space needed to store the input string,
and (in the case of reductions outputting some string) from the space needed
to store the output.

Thus, to properly understand the space usage of a TM deciding a language,
we will focus on TMs using two tapes.

TMs with two tapes. The first tape is the input tape, and it is read-only,
while the second tape is the working tape, and it is read/write. Differently from
reductions, we do not have a third tape, as our TMs do not need to output
anything. Rather, they only need to halt in the accepting or rejecting state,
depending on the input string.

So, whenever we discuss space bounds, we always assume our TM is of the
form above (it does not matter if it is deterministic or not). Now, we are ready
to define the space required by a TM.

Definition 36. The space required by a deterministic TM M with inputs of
length n, denoted SM (n), is the maximum number of cells that M visits on its
working tape, when executed with inputs of length n. If there is an input of
length n for which no bound on the visited cells exists, we say that SM (n) = ∞.

The space required by a NTM is analogous.

Definition 37. The space required by a non-deterministic TM M is the max-
imum number of cells that M visits on its working tape, when considering all
computation paths of its computation tree, when executed with inputs of length
n. If there is an input of length n and a path in the computation tree of M with
that input where no bound on the visited cells exists, then SM (n) = ∞.

Now that we formally specified what is the space required by a TM, we
can start identifying some important classes of languages in terms of space
requirements. As we did for time classes, we first introduce the following general
notation.

127

Marco Calautti Notes of Computability and Computational Complexity

Definition 38. Let f : N → N be a function. We define

DSPACE(f(n)) = {L | ∃ a DTM M that decides L and SM (n) ∈ O(f(n))},

NSPACE(f(n)) = {L | ∃ a NTM M that decides L and SM (n) ∈ O(f(n))}.

So, DSPACE(f(n)) (resp., NSPACE(f(n))) simply collects all languages
that can be decided by a deterministic (resp., non-deterministic) TM that uses
a number of cells in its working tape that is at most of the order of f(n).

18.1 The space classes LOGSPACE and NL

With the above notation at hand, we can start defining our first classes of
languages decidable with a certain amount of space. The first classes we consider
collect languages that can be decided with a “very small” amount of space, i.e.,
logarithmic w.r.t. the input string.

Definition 39. The class of logspace languages is defined as

LOGSPACE = DSPACE(log2 n),

while the class of non-deterministic logspace languages is defined as

NL = NSPACE(log2 n).

Note that in the above definition, we arbitrarily chose logarithms in base
2. However, the actual choice does not matter. In fact, from basic logarithms
properties, we can always convert a logarithm in one base to another by a
constant factor division:

logc n =
log2 n

log2 c
∈ O(log2 n).

Clearly, LOGSPACE ⊆ NL.

Let us see an example of a language in LOGSPACE, i.e., a language we
can decide with a DTM using only logarithmically many cells in the working
tape. One such a language is our usual language

L01 = {0n1n | n ≥ 0}.

The TM we devised at the beginning of our course required, in principle, more
than logarithmic space (actually linear) w.r.t. the input string. This is because
the machine had to “cross” symbols in the input string. But, to do this with a
read-only input tape, it means the machine first needs to copy the whole input
in the working tape, and thus requiring linear space.

We can use a new TM that only requires logarithmic space. Consider an
input string w.

1. If w is empty, accept, otherwise

128

Marco Calautti Notes of Computability and Computational Complexity

2. Scan the input string left-to-right, and increment a counter (stored in the
working tape), for each 0 encountered, until a 1 is found

3. Scan the remaining input left-to-right, and increment a second counter
(stored after the first one), for each 1 encountered, until a blank is found.

4. Compare the counters, if they are the same, accept, otherwise reject.

Note that in the working tape, we are only storing the two counters. In
the worst case, each counter needs to represent the number n = |w|, and, if we
encode the counters in binary, only O(log2 n) cells are required by each counter.
Since we use a constant number of counters (2 in this case), the above TM M
is such that SM (n) ∈ O(log2 n), and thus L01 ∈ LOGSPACE.20

We now consider an example of a language in NL. Recall the language

REACHABILITY = {(G, s, t) | G is a directed graph such that

there is a path from s to t in G}.

We have already seen an algorithm that decides the above language. This
algorithm was based on a breadth search approach, and required polynomial
time. However, this algorithm used a queue of nodes, that in the worst case can
contain all nodes of the graph. Thus, the space required by that algorithm is
linear w.r.t. the input length.

We show that we can decide REACHABILITY via a non-deterministic TM
M such that SM (n) ∈ O(log2 n).

Observation. When we are limited to use logarithmic space but we would
also like to store in the working tape some data of the input string, the main
idea is to store a “pointer” to the desired data. That is, if our TM M wants to
store a node of G in the working tape, it instead stores a number in binary that
denotes the position in the input string where the node occurs. By encoding
this pointer in binary, we only need O(log2 |w|) cells to refer to any data of the
input string w.

Theorem 38. REACHABILITY ∈ NL.

Proof. The main idea of our NTM is to initial set s as the current visited node,
and at each iteration, guess a candidate “next” node v. If the current node is
connected to this new node v by an edge, then v becomes new current node.
The machine keeps doing this until it reaches t. If it cannot reach t, then the
machine rejects. The algorithm is depicted in Algorithm 2.

Note that Algorithm 2 does not need to store the full path that leads from
s to t. It only needs to store the current node, the next node, and the counter,
and can forget about the complete path it has followed. One might think that
this can lead the algorithm to loop. This, however, cannot happen, because the

20Note that if the number of counters was depending on the input, e.g. we had n counters,
the space would be O(n · log2 n), which is not logarithmic.

129

Marco Calautti Notes of Computability and Computational Complexity

Algorithm 2: NL algorithm for REACHABILITY

Input: A directed graph G = (V,E) and two nodes s, t

1 Let p be a pointer to node s, and store it in the working tape;
2 Let cnt := 1 be a counter stored in the working tape;

3 if p points to a node equal to t then
4 Accept;
5 end

6 Guess a pointer p′ to some node v of G;

7 if p points to a node that has no edge to the node pointed by p′ then
8 Reject;
9 end

10 Let p := p′;

11 Let cnt := cnt+ 1;

12 if cnt ≤ |V | then
13 goto step 3;
14 else
15 Reject;
16 end

algorithm keeps track of how many nodes are visited with the counter. If it
visits more than |V | nodes, it just means it followed a wrong path (i.e., if s can
reach t, this must also be possible by visiting each node in the path once, and
thus our machine does not need to consider paths longer than |V |).

The space (number of bits) needed to store a pointer to a node is O(log2 n),
where n is the length of the encoding of (G, s, t), because a pointer is just a
number from 1 to n. The counter requires O(log2 |V |) bits, because it needs to
count from 1 up to |V | + 1.21 So, overall, the algorithm stores three variables,
each of logarithmic size, and thus the overall space is O(log2 n).

Regarding correctness of the algorithm, assume there is a path s, v1, . . . , vk, t
in G. Then, among all possible choices of our procedure, there is a sequence of
choices where the algorithm guesses the nodes v1, . . . , vk, t, one for each iteration,
and thus will realize (in one of its computation paths) that a path exists from s
to t. If there is no path at all from s to t, then whatever the algorithm guesses
at each iteration, it will never reach t, and thus either will reach a dead end (it
rejects on line 8), or it exhausted all possible nodes to visit (it rejects on line
15).

LOGSPACE vs NL. A question that one might ask is whether we can do
better, and decide REACHABILITY in logarithmic space, without relying on

21We need the counter to be able to reach at least |V |+ 1 for the algorithm to realize it is
looping.

130

Marco Calautti Notes of Computability and Computational Complexity

non-determinism, i.e., whether REACHABILITY ∈ LOGSPACE.

Actually, no logspace algorithm is known that decides REACHABILITY.
This is essentially similar to what happens for SAT w.r.t. NP: no one has yet
been able to find a polynomial-time algorithm deciding SAT. This thus raises
the question:

LOGSPACE = NL?

We do not know the answer to the above question. But, as we did for the
P = NP question, we have some tools to attack the question: the notion of
complete languages.

The notion of NL−completeness is similar to the one of NP−completeness.
The main difference is the kind of reductions we use.

Recall that if we can show that an NP−complete language is in P, then
every language in NP is also in P, and thus conclude P = NP. For this to
work, it was crucial that we use polynomial-reductions, i.e., reductions that are
“less powerful” than the algorithms needed to decide NP languages.

With a similar spirit, we need to define NL−complete languages by using
“less powerful” reductions than the algorithms needed to decide NL languages.
Thus, we use logspace reductions. We use L1 ≤L L2 to denote the fact that
there is a logspace reduction from L1 to L2.

Definition 40. A language L is NL−complete if:

1. L ∈ NL, and

2. for each language L′ ∈ NL, L′ ≤L L.
Although we do not prove it, the above definition fullfills its purpose.

Theorem 39. LOGSPACE = NL iff there exists an NL−complete language
that is also in LOGSPACE.

It turns out that REACHABILITY is NL−complete.

Theorem 40. REACHABILITY is NL−complete.

Proof. (Sketch) We have already shown that REACHABILITY is in NL. We
now have to prove that every language L ∈ NL reduces to REACHABILITY
in logspace. Let L be some arbitrary language in NL. Thus, there is a NTM
ML that decides L in logarithmic space. As usual, let us have a look at the
computation tree of ML, when executed with some input w = w1, . . . , wn.

131

Marco Calautti Notes of Computability and Computational Complexity

Note that ML has two tapes, and thus, we should store both tapes content
in an ID, and for each tape, remember where each tape head was positioned.
The computation tree of ML is very similar to a directed graph. We have a
starting node, which is ID0, and we have some ending nodes. Some correspond
to accepting IDs, and others to rejecting IDs. The idea of the reduction is to
construct, starting from w, a directed graph G that contains the computation
tree of ML, and sets the starting node s to ID0, and the end node t to some
special node to which we connect all accepting IDs.

Our reduction, which we call TL, takes as input a string w, and constructs
(G, s, t), where G is a graph and s, t are nodes of G. Let SML(n) ∈ O(log2 n)
be the number of cells used by ML in its working tape. Since our reduction
TL must deal with the IDs of ML, it needs a way to store each of them in
logarithmic space. Since TL takes w as input, it can store a complete ID of ML
by storing SML(n) bits representing the working tape of ML, then the current
state of ML, and finally two binary numbers containing the input and working
tape head positions of ML

22:

A state requires constant space, because its size is independent of the input
string w, while all other data requires logarithmically many cells. Thus, overall,
TL can store an ID of ML in logarithmic space. Finally, as a last observation,
such an ID stored in this way is nothing else than a binary number using g(n)
bits, for some function g(n) ∈ O(log2 n). Thus, each ID is a number from 0 to
2g(n) − 1. With the above observations in mind, our reduction is quite simple.

1. Allocate two numbers ID, ID′ in the working tape, each using g(n) bits.

2. Allocate an additional number ID∗ in the working tape, using g(n) + 1
bits, and set it to all ones.

3. for each ID ∈ {0, . . . , 2g(n) − 1}, do

(a) for each ID′ ∈ {0, . . . , 2g(n) − 1}, do
22It does not need to store also the content of the input tape, since it never changes, since

it is read only, and if TL will ever need its content, this is nothing than w which is part of the
input to TL.

132

Marco Calautti Notes of Computability and Computational Complexity

i. If ID and ID′ represent valid IDs, and ID yelds ID′, then write
the edge (ID, ID′) in the output tape.

ii. Else, if ID is a valid ID and it contains the accepting state, then
write the edge (ID, ID∗) in the output tape.

4. Write the node s = ID0 in the output tape.

5. Write the node t = ID∗ in the output tape.

So, the main idea is that our reduction TL is considering all possible pairs
of IDs ID and ID′. Some of these IDs might very well not be part of the
computation tree of ML, and thus, the constructed graph G, will both contain
the computation tree of ML, but also other “wrong” nodes and edges that do
not appear in the computation tree. However, all these wrong nodes cannot be
reached by node ID0, because they are not part of the computation tree of ML.

Finally, ID∗ uses one more bit than the other nodes, and thus is differ-
ent from all the other IDs used in the for loops, hence, ID∗ has no outgoing
edges, but only incoming edges from accepting IDs. The above observations are
highlighted in the picture below.

Thus, if w ∈ L, and thus, there is a path from ID0 to an accepting ID in the
computation tree of ML, then G has a path from s = ID0 to t = ID∗. If
w ̸∈ L, and thus, all paths in the computation tree of ML are rejecting, then
there is no way in G, starting from s = ID0, to reach a node that is connected
to t = ID∗.

133

Marco Calautti Notes of Computability and Computational Complexity

19 Savitch’s Theorem

In the previous lecture, we discussed the space complexity classes LOGSPACE
and NL, i.e., the classes of languages that can be decided by a deterministic
(resp., non-deterministic) TM using O(log2 n) cells in their working tape. We
have also seen that REACHABILITY is inNL, by means of a NTM that guesses
a path from the source node s to the target node t, by guessing one “next node”
at the time.

Finally, we have shown that REACHABILITY is actually NL−complete.
No one has been able to prove whether LOGSPACE = NL or not, and most
believe LOGSPACE ̸= NL. Thus, since REACHABILITY is NL−complete,
we believe there is no deterministic TM that can decide it using O(log2 n) space
(otherwise LOGSPACE = NL).

However, we know a deterministic algorithm that can decide REACHABIL-
ITY using space O((log2 n)

2), i.e., it requires polylogarithmic space (a logarithm
to the power of some fixed constant). This result, besides being interesting on
its own right, will be the key that allows us to prove the main theorem of this
lecture: Savitch’s Theorem.

We first describe the main idea behind theO((log2 n)
2) algorithm for REACH-

ABILITY. Consider our usual directed graph G:

and assume the starting node s = 2 and target node t = 5. Clearly, there is a
path from s to t in G. For example, s, 1, 4, 3, t. Note that a path from s to t
exists iff there is a node u, roughly in the middle of the path (for example, node
4), such that s can reach u in half the steps (i.e., half the edges) a u can reach
t in half the steps.

We exploit the above observation to devise our O((log2 n)
2) space algorithm

for REACHABILITY.

Theorem 41. REACHABILITY ∈ DSPACE((log2 n)
2).

Proof. The algorithm we are going to devise is a recursive algorithm, that finds
a path from s to t by finding two smaller paths that are joined by a middle node.
We call the algorithm exists− path, and takes as input a directed graph G, two
nodes s, t and an additional integer parameter k. The algorithm accepts if there
is a path from s to t in G requiring at most k steps, and rejects otherwise.

134

Marco Calautti Notes of Computability and Computational Complexity

Algorithm 3: exists− path

Input: A directed graph G = (V,E), two nodes s, t and an integer k

// s must reach t in zero steps

1 if k = 0 then
2 Accept if s = t, otherwise Reject;
3 end

// s must reach t in at most one step

4 if k = 1 then
5 Accept if either s = t or (s, t) ∈ E, otherwise Reject;
6 end

// Find the middle node u
7 foreach u ∈ V do
8 if exists− path(G, s, u, ⌊k/2⌋) and exists− path(G, u, t, ⌈k/2⌉) then
9 Accept;

10 end

11 end

12 Reject;

Clearly, when running exists− path setting k to the total number of edges of
G, exists− path becomes an algorithm deciding REACHABILITY. Let us now
analyse the algorithm.

You should be fairly convinced that the algorithm is correct. Let us focus
on the space it requires.23 Excluding for a second the recursive calls in line 8,
what exists− path actually needs to perform its operations are some pointers to
a constant number of data of the input. That is, two pointers to the nodes s
and t for comparing them, a pointer to the number k to check if it is 0 or 1, and
one pointer for the node u, which at each iteration of the for loop at line 7, can
be erased and reused to point to a new node. Hence, overall, O(log2 n) space is
required, where n is the length of the encoding of the input (G, s, t, k).

We should not forget, however, that our algorithm is recursive, and thus, the
space it uses must be added to the space used by the called sub-functions. To un-
derstand how much space this requires, let us depict the call tree of exists− path,
when given k = |E|.

23Note that in terms of time, the algorithm is very inefficient (it is not even polynomial
time), but we are not concerned with time at the moment.

135

Marco Calautti Notes of Computability and Computational Complexity

When exists− path(G, s, t, |E|) is executed, it then executes itself twice, for each
node u ∈ V . Note that when we finish with a node u, and move to the next, we
can free the space used by the previous two calls, and reuse it for the next node.
Thus, the space required by the for loop is only the space required to perform
the two sub-calls.

When executing the sub-calls, the second call can occur only after the
first call concludes. Similarly, when entering the first sub-call, for example
exists− path(G, s, t, ⌊|E|/2⌋), again two sub-calls are performed, but only the
first is executed, before executing the second.

Hence, when running our algorithm, at first, the chain of calls we have is the
one highlighted in yellow. This chain cannot be longer than log2 |E| ∈ O(log2 n),
because at each call, we divide k by half. When the call at the bottom of the
chain concludes, the space it was using can be freed, and reused to execute the
second call (highlighted in blue), and so on.

So, no more than log2 |E| calls need to be stored in memory at the same
time, and thus, the overall space needed by the algorithm is log2 |E| times the
space needed by one single call, i.e., overall O((log2 n)

2).

The above theorem essentially tells us that although REACHABILITY is
one of the hardest languages in NL (i.e., it is NL−complete), there is actually
a very mild price to pay, in terms of space, to solve it with a deterministic
TM. This was not the case for NP−complete languages, for which the best
deterministic TM we can get is an exponential-time one.

The above observation can be generalized to work not only for REACH-
ABILITY, but for any language, and this leads us to the following theorem,
proved by Walter Savitch in 1970.

Theorem 42 (Savitch’s Theorem). For every function f : N → N, where
f(n) ∈ Ω(log2 n) (i.e., log2 n ∈ O(f(n))),

NSPACE(f(n)) ⊆ DSPACE(f2(n)).

Proof. We provide a proof sketch. We need to show that every language L ∈
NSPACE(f(n)) can be decided by a deterministic TM using O(f2(n)) space.
Consider an arbitrary language L ∈ NSPACE(f(n)). Then, letML be the NTM

136

Marco Calautti Notes of Computability and Computational Complexity

that decides L using O(f(n)) space in its worktape. As usual, let us depict the
computation tree of ML with input some string w = w1, . . . , wn.

You can see that deciding whether w ∈ L boils down to verify if there is a path
from ID0 to some accepting ID of the computation tree.

Actually, we have already seen such a correspondence in the proof that
REACHABILITY is NL−complete. In fact, the idea is the same. We build a
graph G corresponding to the computation tree of ML with input w, and give
this graph to exists− path, where s is the initial ID ID0, t is the special ID ID∗,
and k is the total number of edges.

However, we need to be careful in analysing the size of this graph, when given
to exists− path. Each node is a potential ID of the computation tree. We have
seen in the proof of NL−completeness of REACHABILITY that we can store
an ID by storing the content of the working tape, the current state and the two
heads’ positions. The working tape requires O(f(n)), since L ∈ NSPACE(f(n)),
the state requires constant space, and the two heads positions require O(log2 n)
for the input position, and O(log2 f(n)) for the work tape position.

So, all in all, since we assumed f(n) ∈ Ω(log2 n), the space occupied by one
ID is O(f(n)). Recall that an ID encoded in this way is essentially a number in
binary, using O(f(n)) bits. Thus, the maximum number of possible IDs (i.e.,
nodes in the graph) we can have is O(2f(n)). Hence, the size of the graph G,
representing the computation tree of ML, we give to algorithm exists− path is
O(2f(n)). Since exists− path requires O((log2m)2) space, where m is the size of
its input, the overall required space is O((log2 2

f(n))2) = O(f(n)2).

Remark. The reason why the above proof does not work if f(n) ∈ Ω(log2 n)
does not hold is because whatever is the space required by the NTM deciding a
language L (even constant space!), the nodes of the graphG corresponding to the
computation tree of the NTM still require at least log2 n space. This is because
each node contains the input head position (which requires logarithmic space
w.r.t. input tape string). Hence, the size of G is at least 2log2 n = n, regardless
of the space required to decide L. Hence, the space required by exists− path is
at least (log2 n)

2. So, the space required to decide L by exists− path would not
be O(f2(n)), but more.

Savitch’s Theorem is quite a powerful result that highlights even more how
little we understand about problems and their complexity. In fact, in contrast

137

Marco Calautti Notes of Computability and Computational Complexity

to what we know about time complexity classes, where we can solve an NP
language with a deterministic TM requiring exponentially more time, there is
not much a difference between languages decidable by NTMs or TMs, when
considering space. The reason for this is that space can be reused, while time
cannot.

In fact, the difference even disappears when considering languages for which
at least polynomial space is required.

Definition 41. The class of deterministic polynomial space languages is de-
fined as

PSPACE =
⋃
c≥1

DSPACE(nc),

while the class of non-deterministic polynomial space languages is defined as

NPSPACE =
⋃
c≥1

NSPACE(nc).

By Savitch’s theorem, we immediately get

Corollary 2. PSPACE = NPSPACE.

Proof. It follows by Savitch’s Theorem and from the fact that any polynomial
p : N → N, when squared, i.e., p(n)2, is still a polynomial.

So, when going to polynomial space TMs, there is actually no difference in
power between using non-determinism or not.

We conclude this lecture, by presenting the overall picture regarding all the
complexity classes we have seen up to this point. To draw this picture, we need
first to know how our space and time classes are related to each other.

LOGSPACE ⊆ NL, by definition.

PSPACE = NPSPACE, as we have just shown.

NL ⊆ NPSPACE by definition, and thus NL ⊆ PSPACE, since we have
shown PSPACE = NPSPACE.

Let us now compare our space classes with the time classes.

LOGSPACE ⊆ P. Assume M is a DTM that decides a language L using
O(log2 n) space. The fact thatM decides the language L implies thatM always
halts. Since M always halts and can use at most O(log2 n) space, this means
that M can visit at most O(2log2 n) = O(n) possible IDs (if it visits more than
that, it means it is visiting an already visited ID and thus the machine loops).
Then, the number of steps is polynomial. Hence, M is a polynomial-time DTM
deciding the language L, i.e., L is in P.

NL ⊆ P. To prove this, note that we have a polynomial-time algorithm
solving REACHABILITY (the breadth first algorithm). Since REACHABIL-
ITY is NL−complete, we can solve every language L in NL by first converting
the input string w of L to a graph G and nodes s, t, using the reduction from

138

Marco Calautti Notes of Computability and Computational Complexity

L to REACHABILITY. Since the reduction is a logspace reduction, from what
we said above, it can only perform polynomially many steps. Then, we run the
breadth first algorithm over this graph, and overall decide L in polynomial time.

NP ⊆ PSPACE. If L is a language inNP, and thus has a NTMM deciding
L in polynomial time, it means M performs at most a polynomial number of
steps, and thus cannot use more than polynomially many cells. Hence M is a
NTM using polynomial space deciding L, i.e., L ∈ NPSPACE = PSPACE.

coNP ⊆ PSPACE. For this, let L be a language in coNP. So, L̄ ∈ NP.
Since we have shown that NP ⊆ PSPACE, we conclude L̄ ∈ PSPACE.
Thus, there a deterministic TM M that decides L̄ in polynomial space. Since
M is deterministic, we can invert qaccept with qreject in M , and obtain a TM
that decides the complement of L̄, i.e., L, with polynomial space. Hence, L ∈
PSPACE, and thus coNP ⊆ PSPACE.

PSPACE ⊆ EXP. For this, we use the same reasoning we used to prove
LOGSPACE ⊆ P: every DTM M deciding some language L using O(nc)
cells can only visit O(2n

c

) IDs. Hence, M requires exponentially many steps to
decide L.

139

Marco Calautti Notes of Computability and Computational Complexity

20 Turing Machines with Oracles, the Polyno-
mial Hierarchy, and Search Problems

We have seen a pletora of decision problems, belonging to a good variety of
complexity classes, spanning from very low space usage like LOGSPACE up
to exponential-time classes like EXP and NEXP.

All such classes were defined as the sets of all languages that can be decided
by a certain kind of TM (i.e., a polynomial-time TM, or a polynomial space
TM, and so on), and in most cases, the TMs were required to perform their
computation “on their own”, i.e., without relying on any help by external “sub-
routines”.

However, we are quite used to the fact that when solving a problem via an
algorithm, one can decompose the problem into sub-problems, and then solving
the main problem boils down to solve the sub-problems first, and then combine
the solutions. This requires our main algorithm to be able to make calls to other
algorithms, that are in charge of solving the sub-problems.

Consider, for example, the following language:

MIN-VCOVER = {(G, k) | G is an undirected graph and

k is the size of the the smallest vertex cover of G}.

Recall that a vertex cover of G = (V,E) is a set of nodes V C ⊆ V such that
every edge of G is “touched” by some node in V C, i.e., ∀{u, v} ∈ E, either
u ∈ V C, or v ∈ V C or both u, v ∈ V C.

Note that the above language is different from VCOVER. VCOVER asks if
G has a vertex cover of size at most k. The above asks, given (G, k), whether k
is optimal, i.e., the smallest vertex cover of G is of size k. Consider the following
graph:

A possible vertex cover for the above graph is V C1 = {2, 4, 5}. However,
this vertex cover is not of minimum size. In particular, we can find a smaller
vertex cover V C2 = {1, 3}. It is not difficult to verify that there are no smaller
vertex covers than V C2. Thus, (G, 2) ∈ MIN-VCOVER, if G denotes the graph
in the above example.

So, how difficult is to decide MIN-VCOVER? What is its complexity?
Definitely, MIN-VCOVER can be easily placed in PSPACE, since a naive

algorithm deciding MIN-VCOVER, given (G, k), simply needs to try all possible
sets of nodes V C ⊆ V . At each iteration, if V C is a vertex cover of a size smaller
than the previous ones, the algorithm updates the current minimum with the

140

Marco Calautti Notes of Computability and Computational Complexity

new size. The algorithm only needs to store, at each iteration, the set V C (which
requires O(|V |) space), and the current minimum, which is a binary number m
that is at most |V |, and thus requires O(log2 |V |) space.

Can we do better? Is MIN-VCOVER in NP? or is MIN-VCOVER in
coNP? Towards showing MIN-VCOVER is in NP, let us analyse first the
non-deterministic procedure deciding VCOVER. Let (G, k) be the input, with
G = (V,E).

1. Guess a set of nodes V C ⊆ V .

2. Verify that |V C| ≤ k and that V C is a vertex cover of G.

Note that the above procedure, alone, is not able to conclude if k is the size of
the smallest vertex cover, since finding one of size at most k does not mean that
there is no other vertex cover of smaller size. Indeed, to decide MIN-VCOVER
we should verify two things: that G has a vertex cover of size at most k (which
is what the above procedure does), but also verify that G has no vertex cover
of smaller size, i.e., of size at most k − 1.

So, it seems that to be able to decide MIN-VCOVER, we are required to
solve both the problem VCOVER (since we ask if G has a vertex cover of size
at most k), and the problem VCOVER ∈ coNP (since we ask if no vertex
cover of G is of size at most k − 1). Since we believe NP ̸= coNP, it is
unlikely that the above process can be carried out by a single non-deterministic
procedure, in polynomial time (i.e., in NP), as this would imply an NTM can
decide a coNP−complete language (VCOVER) in polynomial time, and thus
NP = coNP.

Is there a better procedure that avoids the above issue? We are not aware of
any, and if you try to place MIN-VCOVER in coNP by solving its complement,
you will end up in a similar situation. So, we do not know if MIN-VCOVER is
in NP or in coNP, and most find it unlikely, for the reasons discussed above.

So, the best we can do, at the moment, to analyse the complexity of MIN-
VCOVER, is to exploit the fact, as we observed above, that MIN-VCOVER
can be rephrased/redefined in terms of the language VCOVER. That is, MIN-
VCOVER can be rewritten as:

MIN-VCOVER = {(G, k) | (G, k) ∈ VCOVER and (G, k−1) ̸∈ VCOVER}.

So, we have rephrased our language as a language where we need to ask different
questions. In this case, we are asking two questions regarding an NP language.
One is whether G has a vertex cover of size at most k, i.e., (G, k) ∈ VCOVER,
and the other is whether G has no vertex cover of size at most k − 1, i.e.,
(G, k − 1) ̸∈ VCOVER. Hence, an algorithm that solves MIN-VCOVER is
the one that uses some “sub-routine” that is able to decide VCOVER. Our
algorithm only needs to call the sub-routine twice and make a decision on the
basis of the results obtained from the above two calls. Assume check− vcover
is an algorithm that decides VCOVER.

141

Marco Calautti Notes of Computability and Computational Complexity

1. Let result1 := check− vcover(G, k);

2. Let k′ := k − 1;

3. Let result2 := check− vcover(G, k′);

4. If result1 = true and result2 = false, then Accept, otherwise Reject.

The above procedure shows that, assuming we have a sub-routine deciding
VCOVER, then we only require a polynomial number of steps, to decide MIN-
VCOVER.24

The above algorithm is what we call a TM with an oracle, i.e., a TM that
can ask to an oracle whether a string is in a certain language o not.

Remark. Note that we are not claiming that MIN-VCOVER can be decided
in polynomial time. What we are saying is that the main difficulty in deciding
MIN-VCOVER lies in asking questions to the oracle, but excluding that, the rest
is “easy”, i.e., in polynomial time. This gives us an indication of the complexity
of MIN-VCOVER: it is “easy” to solve, for the most part, excluding the difficult
part of asking questions to the oracle.

We now formally define this notion.

Definition 42. Consider a language L. A TM M with an oracle for L is a
standard TM, with the following additional elements:

1. An additional read/write tape, called the oracle tape;

2. Three additional states q?, qyes, qno.

The way a TM M with an oracle for L performs its computation is similar
to the one of any TM. The main difference is that when M transitions to state
q?, then M will automatically move, in one step, to the state qyes, if the string
written in the oracle tape belongs to L, otherwise, it moves to qno.

This is our way of saying that M can ask questions to a sub-routine that is
able to decide some language L. Indeed, if M needs to know if a certain string
w is in L, before continuing its computation, it just needs to write w in the
oracle tape, and then move to the state q?. If after this, M is in state qyes, then
M concludes that the answer to the question w ∈ L is yes.

Remark. Note that we assume M moves from q? to qyes or qno in one step.
That is, we do not want to consider the time required by the oracle to answer the
question. We do this, because usually we already know what is the complexity
of the oracle L, and we instead want to understand the actual amount of work
that the main algorithm described by M performs.

We can now define different complexity classes, based on the notion of TMs
with an oracle.

24It might seem we require a constant number of steps, i.e., 4, but we must compute k′,
which requires some time that depends on the number of bits k.

142

Marco Calautti Notes of Computability and Computational Complexity

Definition 43. If C is some complexity class (e.g., P, NP, etc.). We define

PC = {L | L can be decided by a polynomial-time DTM

with an oracle for some language L′ ∈ C}.

NPC = {L | L can be decided by a polynomial-time NTM

with an oracle for some language L′ ∈ C}.

For example, PNP collects all the languages that can be decided by a
polynomial-time procedure that can ask questions to an oracle for some NP
language. MIN-VCOVER is an example of such a language. In fact, the al-
gorithm we have shown before performs a polynomial number of steps, and
makes some calls (two) to an oracle for the NP language VCOVER. Hence,
MIN-VCOVER ∈ PNP.

Note that every language L ∈ NP necessarily is in PNP, i.e., NP ⊆ PNP,
for the simple reason that a trivial procedure deciding L is the one that takes
as input a string w, asks an oracle for L if w ∈ L, and then accepts/rejects
accordingly. That is, this procedure is essentially a one-line algorithm that
simply directly passes control to a sub-routine for L. More interestingly, for
each L ∈ coNP, L is also in PNP. This is because TMs with oracles can
retrieve an answer from the oracle, and then flip it, if they want. Thus, we
can decide L as follows. Let L̄ be the complement of L, which is in NP, by
definition. Given a string w, we decide if w ∈ L by simply asking an oracle for
L̄ if w ∈ L̄. If this is the case, reject, otherwise, accept. Thus, coNP ⊆ PNP.

The Polynomial Hierarchy. There exist many other languages that require
even more complex TMs with oracles. For example, languages that are in

NPNP, or even languages that are in NPNPNP

. The latter means they can be
solved in polynomial time by a NTM with an oracle for a language in NPNP.
One can keep defining larger and larger classes, in this way, and, indeed, this is
what it has been done. We actually define an infinite hierarchy of complexity
classes, called the polynomial time hierarchy.

Here we just quickly define it, and place it w.r.t. the other complexity classes
we have seen so far.

Definition 44. First, we define Σp
1 = NP. Then, for each i ≥ 1, we define

Σp
i+1 = NPΣp

i ,

Πp
i = coΣp

i = {L | L̄ ∈ Σp
i },

∆p
i+1 = PΣp

i ,

So, for example, Πp
1 = coNP. As another example, Σp

3 = NPΣp
2 = NPNPNP

.
Moreover, Πp

3 is the set of all languages whose complement is in Σp
3 . Finally,

∆p
3 = PΣp

2 = PNPNP

.

143

Marco Calautti Notes of Computability and Computational Complexity

Note that ∆p
2 = PNP, and thus MIN-VCOVER ∈ ∆p

2 . We now discuss the
relative inclusion of the above complexity classes.

We first show that Σp
i ⊆ ∆p

i+1, and Πp
i ⊆ ∆p

i+1. By definition, ∆p
i+1 = PΣp

i ,

and thus, similarly to what we said for the inclusion NP ⊆ PNP, trivially
Σp

i ⊆ PΣp
i = ∆p

i+1. Similarly to what we discussed for the inclusion coNP ⊆
PNP, since TMs with an oracle can flip the answer they get from the oracle, we
conclude that Πp

i ⊆ PΣp
i = ∆p

i+1.

What is left to prove is that ∆p
i ⊆ Σp

i and ∆p
i ⊆ Πp

i . By definition, ∆p
i =

PΣp
i−1 , and Σp

i = NPΣp
i−1 . Thus, any language that can be decided by a TM

with an oracle in Σp
i−1, in polynomial time, can surely be decided by a NTM with

the same oracle, in polynomial time (the NTM simply does not use any non-
determinism at all). Thus, ∆p

i ⊆ Σp
i . To show ∆p

i ⊆ Πp
i , consider a language

L ∈ ∆p
i = PΣp

i−1 . This means there is a deterministic TM M that decides
L, using an oracle for some language in Σp

i−1. Since M is deterministic, the
machine M ′, where we invert qaccept with qreject in M decides the complement
L̄ of L. That is, L̄ ∈ ∆p

i , and thus ∆p
i = co∆p

i . Since L̄ ∈ ∆p
i , and ∆p

i ⊆ Σp
i , as

we have shown above, we conclude that L̄ ∈ Σp
i . Hence, its complement L ∈ Πp

i .
Thus, ∆p

i ⊆ Πp
i .

So, by using the above two kinds of inclusions, we conclude that our com-
plexity classes are related as follows.

The only inclusion we did not prove (and we are not going to do it), is that
every class of the polynomial hierarchy is contained in PSPACE.

Just to give some example of languages that belong to the various levels
of the polynomial hierarchy, we mention some generalizations of SAT. Recall
that SAT is the decision problem asking if some Boolean formula in CNF φ is
satisfiable. This can be rephrased as asking if a formula of the form

∃x1, . . . , xn : φ

144

Marco Calautti Notes of Computability and Computational Complexity

is true, where x1, . . . , xn are the Boolean variables occurring in φ. That is, we
want to know if there exist truth values, for each Boolean variable, such that φ
becomes true. One can generalize the above problem by considering formulas
of the form:

∃x1, . . . , xn : ∀y1, . . . , ym : φ.

That is, do exist truth values for x1, . . . , xn, such that, for all truth values we
assign to y1, . . . , ym, φ is true? We call formulas of the form above ∃∀-Boolean
formulas. ∃∀-SAT is the language of ∃∀-Boolean formulas in CNF that are true.
∃∀-SAT is in Σp

2 , and it is actually Σp
2−complete, where completeness is defined

as usual, by considering polynomial-time reductions.
One can go one step further, and consider ∃∀∃∀ · · ·︸ ︷︷ ︸

k

-SAT, where we have k

quantifiers, in which case, ∃∀∃∀ · · ·︸ ︷︷ ︸
k

-SAT is Σp
k−complete. The corresponding

complements are Πp
k−complete.

Solving search problems using their decision version. At the beginning
of this course, we anticipated that decision problems will be also useful to un-
derstand the complexity of their search version. Indeed, TMs with oracles are
exactly the tool we need to transfer knowledge from a decision problem, to its
search version.

For example, what if we want to solve the search problem corresponding to
VCOVER? That is

Given an undirected graph G, compute the size k of the smallest vertex cover
of G.

Recall that we represent search problems as functions. So, the above prob-
lem can be defined as the function FMIN-VCOVER (that stands for functional
minimum vertex cover) such that, for every undirected graph G,

FMIN-VCOVER(G) = min{|V C| | V C is a vertex cover of G}.

To solve the above problem, we should equip our TMs with an output tape,
as we did for our reductions, and let the TM write the result in the output tape.
As we did with our reductions, in this case our TM always accepts.

Remark. Note that only deterministic TMs have a clear notion of “output”,
since when they are executed, they only follow one computation path, and thus,
given an input string w, the output is only determined by the content of w. On
the other hand, for non-deterministic TMs, the output is not determined by w
alone, but also by the non-deterministic choices made by the machine. Hence,
what would be the output of an non-deterministic TM? To avoid these issues,
we only consider deterministic TMs with output tapes.

We show we can solve FMIN-VCOVER with a TM with an oracle for
VCOVER.

145

Marco Calautti Notes of Computability and Computational Complexity

1. Let k := |V | − 1;

2. while (G, k) ∈ VCOVER, do

3. (a) k := k − 1;

4. Write k + 1 in the output tape.

The main idea is to start asking the oracle if G has a vertex cover of size at
most |V | − 1 (there is no point in asking if it is of size at most |V |, because the
answer is trivially yes). If this is the case, then we check if G as a smaller vertex
cover, i.e., of size at most |V | − 2. If this is the case, we check smaller vertex
covers, and so on. The algorithm keeps going, until it finds some k that is so
small that no vertex cover of at most that size exists in G. This means that
the previous k is the minimum size of a vertex cover of G, and thus it outputs
k + 1. The procedure requires O(|V |) steps, and it asks questions to an oracle
for the NP language VCOVER.

In which class does FMIN-VCOVER belong to? Since FMIN-VCOVER is
a search problem, and not a decision problem, formally, we cannot place it
in PNP. However, we can define FP as the class of search problems (i.e.,
functions) that can be solved by a TM with output tape, in polynomial time.
Hence, FMIN-VCOVER is in FPNP.

Can we do better than this? Actually, we can devise a better algorithm
solving FMIN-VCOVER. In fact, we can speed up the algorithm by employing
binary search. The idea is to start asking the oracle if G has a vertex cover
of size at most k = |V |/2. If for example this is the case, then the smallest
vertex covers must have size between 0 and |V |/2, and thus there is no point in
considering a value of k greater than |V |/2. This is shown in the figure below.

Now, we ask the oracle if G has a vertex cover of size at most k = |V |/4. If, for
example, the answer is no, it means that we have to look for vertex covers of
size between |V |/4 + 1 and |V |/2, as shown in the picture below, and so on.

The algorithm continues like this until the green interval contains only one
number k. This number is the size of the smallest vertex covers in G.

The procedure is still a polynomial time procedure, since it needs to initialize
k to |V | − 1, and thus must scan the whole input, and must also copy the data
for the oracle in the oracle tape. However, this time, how many calls to the

146

Marco Calautti Notes of Computability and Computational Complexity

oracle does the algorithm make? It makes O(log2 |V |) calls, in the worst case,
rather than O(|V |), as in the previous procedure.

To specify this, we define another complexity class, FPNP[log2 n], which col-
lects the search problems that can be solved in polynomial time, by making
O(log2 n) calls to an oracle for a language in NP, where n is the length of the

input. We have that FMIN-VCOVER ∈ FPNP[log2 n].

Remark. Note that knowing that the search problem FMIN-VCOVER uses its
corresponding decision problem VCOVER as an oracle tells us something very
important about the complexity of FMIN-COVER. Indeed, if we were able to
solve FMIN-VCOVER in polynomial time, i.e., FMIN-VCOVER ∈ FP, then,
we could solve VCOVER in polynomial time. In fact, if FMIN-VCOVER ∈ FP,
we could check, given (G, k), if there is a vertex cover of size at most k, by first
computing the minimum size k′ of a vertex cover of G in polynomial time, and
then just verify that k′ ≤ k. Thus, we conclude that FMIN-VCOVER cannot be
solved in polynomial time, unless VCOVER is in P, and thus, unless P = NP.
Thus, as we anticipated in the very first lecture of this course, decision problems
are not only interesting on their own, but also allow us to draw useful conclusions
on their more general search version.

147

Marco Calautti Notes of Computability and Computational Complexity

21 The Travelling Salesman Problem

In this lecture, we see another example of search problem, whose complexity can
be understood by analysing the complexity of its decision version. To define this
search problem, we first need to introduce a couple of notions.

Definition 45. A weighted directed (resp., undirected) graph is a triple G =
(V,E, λ), where (V,E) is a directed (resp., undirected graph) and λ : E → N is
a function assigning a weight to each edge in E.

The following is an example of a weighted, undirected graph, where the
weights are highlighted in blue.

The cost of a path (or a cycle) in a weighted graph like the one above is the
sum of the weights of all edges in the path. So, for example, the cost of the
cycle 1, 4, 5, 3, 2, 1 is 2 + 2 + 1 + 4 + 1 = 10.

The next important notion we need, in order to introduce our search prob-
lem, is the one of Hamiltonian cycle.

Definition 46. An Hamiltonian cycle of a (possibly weighted) directed or undi-
rected graph G is a cycle of G that visits every node of G exactly once (excluding
of course the fact that the starting and ending nodes must coincide).

For example, the cycle 1, 4, 5, 3, 2, 1 is an Hamiltonian cycle, since it visits
every node of the graph (i.e., no node is left out), and each node is visited only
once. The cycle 1, 2, 4, 1 is not Hamiltonian, since although it does not visit the
same nodes more than once, it leaves other nodes of the graph out.

This notion is at the basis of the Travelling Salesman Problem.

Definition 47. The (Functional) Travelling Salesman Problem (FTSP) is the
problem of computing, given a weighted undirected graph G = (V,E, λ), the
minimum cost of an Hamiltonian cycle of G, if G has any, otherwise some
default symbol/value (e.g., ⊥) must be returned.

For example, the Hamiltonian cycle 1, 4, 5, 3, 2, 1 of the graph above has cost
10, while the Hamiltonian cycle 1, 3, 5, 4, 2, 1 has cost 7. There are no other
Hamiltonian cycles, and thus the minimum cost is 7.

The above search problem is a very important problem in logistics, as it can
be restated as

“Given a set of cities, connected by some roads, where each road has a certain
length, e.g., in kilometres, what is the shortest distance that a courier must

travel, to be able to perform its delivery to every city exactly once, before going
back to the deposit?”

148

Marco Calautti Notes of Computability and Computational Complexity

How can we solve the above search problem? We can do it, by using an
oracle to the decision version of FTSP, which we simply call TSP, defined as
follows.

TSP = {(G, k) | G is a weighted, undirected graph, and

G has an hamiltonian cycle of cost at most k}.

We can very easily prove that TSP is in NP. Indeed, it is enough, given
(G, k), with G = (V,E), to guess a sequence of |V | nodes v1, . . . , vn (which is of
polynomial size), and then verify that all nodes are different, vi is connected to
vi+1 by an edge, vn is connected to v1 by an edge, and the cost of this cycle is
smaller than k.

How can we solve FTSP using an algorithm having an oracle for TSP? We
can use the same approach we used for FMIN-VCOVER. We try all costs k,
starting from the largest, and ask the oracle for TSP if the graph G has an
Hamiltonian cycle of cost at most k. Once the answer is no, the previous k is
the minimum cost. Let G = (V,E, λ) be the input weighted, undirected graph.

1. Let k be the sum of all costs of all edges in G;

2. If (G, k) ̸∈ TSP, write ⊥ in the output tape, and halt.

3. while (G, k) ∈ TSP, do

4. (a) k := k − 1;

5. Write k + 1 in the output tape;

The main difference with the algorithm for FMIN-VCOVER is that G might
not have an Hamiltonian cycle at all, and then we first check if it has any, by
using the maximum cost possible. If at least an Hamiltonian cycle exists, we can
proceed to search the minimum cost, otherwise a special symbol ⊥ is outputted,
to specify no minimum cost could be found.

At first sight, it might appear that the above algorithm requires a polynomial
number of steps. However, we must be careful in our analysis, because the
number of steps the algorithm performs is linear in the maximum cost. However,
each cost associated to each edge is a binary number. If m is the number of
bits used to encode each cost, summing up |E| such costs can lead to a number
with m+ |E| bits at most. Thus, the value to which k is initialized in line 1, is
a O(2m+|E|), and thus, the while loop performs exponentially many iterations.
To solve the problem, we can use binary search, as we did for FMIN-VCOVER.
We first define an interval [a, b] of plausible costs of the minimum Hamiltonian
cycle, where a = 0 and b is the maximum possible cost. Then, we iteratively
discard half of the current interval, depending on the answer we obtain from the
oracle. Moreover, while doing this, if we realize the middle point of the interval
we are considering is the optimum, the procedure writes the result and halts.

1. Let a = 0 and let b be the sum of all costs of all edges in G;

149

Marco Calautti Notes of Computability and Computational Complexity

2. while a ≤ b, do

3. (a) Let k = ⌊(a+ b)/2⌋;
(b) If (G, k − 1) ∈ TSP, then let b = k − 1;

(c) Else, if (G, k) ∈ TSP, write k in the output tape, and halt;

(d) Else, let a = k + 1;

4. Write the symbol ⊥ in the output tape.

After constructing the initial large interval [a, b], the algorithm must verify one
the following three things. If the cost of a Hamiltonian cycle is strictly smaller
than the middle point k (i.e., we ask (G, k − 1) ∈ TSP) then we move the left
interval, excluding also k. If this is not the case, but the an Hamiltonian cycle
has cost at most k, then k is necessarily the cost we are looking for. Otherwise,
it means the cost is strictly larger than k, and then we set a = k+1. If the graph
has no Hamiltonian cycle at all, the condition on the while loop will eventually
become false, and then, the algorithm simply writes a special symbol denoting
that no minimum cost could be found.

The above algorithm performsO(log2 C) iterations, where C is the maximum
cost computed in b at line 1. Since C ∈ O(2m+|E|), the overall number of
iterations is O(log2 2

m+|E|) = O(m+ |E|), so it is polynomial in the size of the
input. So, binary search not always allows us to conclude that the problem is
in FPNP[log2 n], because it depends on the interval on which the algorithm is
working. In this case, we have shown that FTSP is in FPNP.

The final question is, can we do better? Can we solve FTSP in polynomial
time? That is, is FTSP ∈ FP? To answer this question, again, observe that
FTSP is more general than TSP, and if we were able to to solve FTSP in polyno-
mial time, we could solve TSP in polynomial time, by computing the minimum
cost, and verify it is smaller than the given k. So, if TSP is NP−complete,
there is no hope to solve FTSP in polynomial time, unless P = NP.

The rest of this lecture is devoted to prove that TSP is NP−complete, and
thus we can rule out efficient algorithms for solving FTSP (unless P = NP).

21.1 Directed Hamiltonian cycle

To prove TSP is NP−complete, we proceed in different steps. First, we focus
on a language that is closely related to TSP, for which it will be easier to prove
NP−completeness. Then, we show how to reduce this language to TSP. The
language is

DIRECTED-HAMCYLE = {G | G is a (not weighted) directed graph, and

G has an hamiltonian cycle}.

Theorem 43. DIRECTED-HAMCYCLE is NP−complete

150

Marco Calautti Notes of Computability and Computational Complexity

Proof. Membership in NP is easy, and can be proved in the same way we did
for TSP: guess a sequence of nodes, and verify it is an Hamiltonian cycle. We
focus on the NP−hardness. For this, we show a polynomial-time reduction
from 3-SAT to DIRECTED-HAMCYCLE. Recall that

3-SAT = {φ | φ is a satisfiable Boolean formula in CNF

with at most 3 literals per clause }.

First, note that if a clause of a CNF formula φ contains both a variable xi and
its negation ¬xi, this clause is always satisfiable, and thus can be removed from
φ, without changing the satisfiability of φ. Thus, our reduction, before doing
anything else, first removes these clauses. This is to simplify the reduction later.
Assume φ is the formula after removing the above clauses.

So, the goal is, given φ, to construct a directed graph G such that φ is
satisfiable iff G has an Hamiltonian cycle. Moreover, the procedure must require
polynomially many steps. We describe the reduction using the following example
Boolean formula:

φ = (x1 ∨ x2)︸ ︷︷ ︸
C1

∧ (¬x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
C2

∧ (¬x2 ∨ ¬x3)︸ ︷︷ ︸
C3

.

The general reduction should be clear after we discuss it for the above formula.
Let m be the number of clauses in φ, in this case m = 3. For each variable xi

of φ, we introduce 2 ·m nodes, named x
(1)
i , x

(2)
i , . . . , x

(2m)
i . Then, we connect all

the nodes of a variable xi in a row. The row can be traversed in both directions,
by surrounding every two of such nodes with a “filler” node on both sides.
Moreover, the row starts and ends with a special node, which for illustration
purposes, we represent with a diamond ⋄. The name of the filler and diamond
nodes is unimportant. For example, for the variables x1, x2, x3 of our example
formula, we obtain:

Ignoring for a second why we chose this amount of nodes for each variable,
the intuition behind the above construction is that an Hamiltonian cycle will
simulate choosing the value “true” for xi by visiting the row of xi by following

151

Marco Calautti Notes of Computability and Computational Complexity

the green path from left to right. The choice of the value “false” for xi is instead
simulated by visiting the row of xi by following the red path from right to left.
To allow an Hamiltonian cycle to make this “choice”, we add the following edges
to the graph:

where s and t are two new nodes. Thus, if we want to simulate a truth assign-
ment where x1 is true, x2 is false, and x3 is false, then we have a corresponding
Hamiltonian cycle doing the following. It starts from s, follows the left edge
from s to the left-most node of x1’s row, and then follows the green path up
to the right-most node. Then, since x2 must be false, it follows the edge to
the central node connecting x1’s row with x2’s row, and then follow the edge
going on the right-most node of x2’s row. This way, the cycle traverses x2’s row
following the red path from right to left. Since also x3 must be false, it then
follows the edge to the central node, and then the edge leading to the right-most
node of x3’s row, and finally traverses it using the red path. Then, it can finally
reach t, and then goes back to s.

Note that any Hamiltonian cycle, once it enters a green or red path, cannot
“escape” the path before it completely visits it, because to escape such a path,
it is forced to go back to an already visited node.

Thus, there is a one to one correspondence between all the truth assignments
τ of φ (even the ones not satisfying φ) and the Hamiltonian cycles of the graph
starting from s. What is left to do, is to add some edges and nodes to the graph
in order to only keep the Hamiltonian cycles representing truth assignments
that satisfy φ. For this, we add one node for each clause of φ. In this case, 3
nodes C1, C2, C3:

152

Marco Calautti Notes of Computability and Computational Complexity

Now, our Hamiltonian cycles must also visit nodes C1, C2, C3. However, we
allow them to visit all three nodes C1, C2, C3 only if they represent assignments
satisfying φ. This means that the node of a clause Ci can only be reached by
Hamiltonian cycles that make at least one of Ci’s literals true.

Let us focus on clause C1 = (x1 ∨ x2). Our Hamiltonian cycle must be able
to visit node C1 only if it has either chosen the green path for x1 or the green
path for x2.

To do this, we dedicate the first two “named” nodes x
(1)
1 and x

(2)
1 of x1’s

row and the first two named nodes x
(1)
2 and x

(2)
2 of x2’s row to allow their green

path to detour to C1:

Thus, if, for example, x1 is assigned to true (i.e., the cycle chooses the green

path for x1, then the cycle can detour from x
(1)
1 to C1, and then go back to

x
(2)
1 , and continue. Similarly, for x2. If C1 contained a negated variable, then

the detour must start from x
(2)
1 and return to x

(1)
1 . We do this, because if the

153

Marco Calautti Notes of Computability and Computational Complexity

clause contains a negated variable ¬xi, the detour must be only allowed when
following the right-to-left red path of xi’s row, and not when following the green
path, and vice versa.

Let us now consider the second clause C2 = (¬x1 ∨¬x2 ∨x3). Here we must
allow the Hamiltonian cycle to visit node C2 only when it is visiting the red
path for x1, or the red path for x2 or the green path for x3. So, we allow the
detour to happen via the third and fourth named nodes of each x1, x2, and
x3. Depending on whether the variables appear negated or not, the detour will
start either from the left or from the right. We do the same for clause C3, and
obtain the graph:

So, as an example, the truth assignment assigning all variables to false has no
corresponding Hamiltonian cycle, because if we choose to traverse the graph,
starting from s, by visiting the nodes only via the red paths, there is no way
to reach all clause nodes without visiting a node twice. In particular, node C1

becomes unreachable, because to reach it, we must go back to an already visited
node.

Assume τ is a truth assignment satisfying φ. The corresponding Hamilto-
nian cycle in G should be easy to imagine: start from s, follow the path of x1
according to the truth value τ(x1), and detour to all clauses to which we can
detour. Keep going like this, and if a previous variable already detoured to a
clause, skip it, and continue without detouring.

Assume instead that G has an Hamiltonian cycle C. Since C is a cycle, it
does not matter from which node it starts. So, assume C starts from s.

Note that in principle, C might not traverse the nodes in the “good” way we
described, i.e., when it follows a green or red path, it only detours to clauses in
the direction corresponding to the colour, and “goes back” immediately to that
path. However, we prove that C indeed must necessarily following this scheme.

There are two cases in which C does not follow the above scheme.

154

Marco Calautti Notes of Computability and Computational Complexity

1) Assume, towards a contradiction, that C starts from s, and follows a
green path and visits xji and after that xj+1

i , but now decides to detour to a

clause from xj+1
i (this clause should not be visited in this way, but when coming

from the right). If this is the case, now C has only one way to visit the filler
node on the right of xj+1

i , i.e., coming from the right. But when C visits the
filler node from the right, C will get “stuck” on the filler node (as it has no
outgoing edges, besides the one going back to xji), and thus cannot reach s and

close the cycle. This is also true if xji and x
j+1
i are the last to ”named” nodes of

the row, i.e., x2m−1
i and x2mi , as on their right we still have a such a filler node

with no outgoing edges. Similarly, if C was traversing a red path, we have no
detour from xji .

2) Assume, towards a contradiction, that C follows a green path and visits
xji , and correctly decides to detour to a clause, but it does not come back to

xj+1
i immediately after. The only chance the cycle C has to visit xj+1

i is then to

enter it from the right filler node. But once xj+1
i is reached, there is no way to

escape the path anymore, because xj+1
i has no outgoing edges (remember that

xi and ¬xi cannot appear together in the clause where C detoured). Thus, C
cannot go back to s. A similar argument can be used if C follows a red path.

So, any Hamiltonian cycle of G traverses the nodes in the expected way, and
thus if φ is not satisfiable, there is no way to visit all nodes exactly once by
following the “expected way”, as some clause will necessarily be left out.

You can easily verify the reduction performs in polynomial time.

The above was the more difficult result to prove. Note however, that TSP,
the original decision problem we are interested in is defined on undirected graphs,
but DIRECTED-HAMCYCLE is on directed graphs. To get closer to proving
that TSP isNP−complete, we need another proof about the following language:

UNDIRECTED-HAMCYLE = {G | G is a (not weighted) undirected graph,

and G has an hamiltonian cycle}.

Theorem 44. UNDIRECTED-HAMCYCLE is NP−complete

Proof. Membership in NP is as usual. To prove UNDIRECTED-HAMCYCLE
isNP−hard we reduce DIRECTED-HAMCYCLE to UNDIRECTED-HAMCYLE.
In particular, we simply need to show how to convert a directed graph G to an
undirected graph G′, such that G has an Hamiltonian cycle iff G′ has one. Let
us first discuss a simple reduction idea that does not work. Consider the simple
directed graph:

155

Marco Calautti Notes of Computability and Computational Complexity

The above graph has no Hamiltonian cycle (actually, has no cycles at all). We
definitely cannot simply make all edges undirected:

because we would introduce cycles that do not exist in the original graph (these
cycles traverse edges without following all edges in the same direction). The trick
is instead to “split” each node v of the original graph in 3 nodes called v(in),
v(mid), and v(out). Each node v is then represented by its 3 nodes, connected in
a “line”. For example, for node a, we have a(in) − a(mid) − a(out). If v has an
edge that goes from v to some other node u, then we use an undirected edge
between the “out” node of v and the “in” node of u. With the graph of the
example above, we obtain the following undirected graph:

Now, even if there is a cycle in the new graph, this cycle cannot traverse all
nodes (the red ones are excluded), because once the cycle follows an edge in
a certain direction (i.e., following the arrow, or following it in reverse), it now
must be coherent and follow the next edges in the same direction.

Let us now prove formally the above claim. Let G′ be the graph obtained
from G, after we split each node v to v(in), v(mid), and v(out), and connect the
edges as discussed.

Assume v1, v2, . . . , vn, v1 is an Hamiltonian cycle in the (directed graph) G.
Then, surely

v
(in)
1 , v

(mid)
1 , v

(out)
1 , v

(in)
2 , v

(mid)
2 , v

(out)
2 , . . . , v(in)n , v(mid)

n , v(out)n , v
(in)
1

is a cycle in G′. Moreover, since v1, . . . , vn are all the nodes in G, the nodes in
the above cycle are all the nodes in G′, by construction of G′.

Assume now that G′ has an Hamiltonian cycle, and let C be such a cycle.
Observation 1. A node v(mid) in G′ has only two neighbours, i.e., v(in)

and v(out). Thus, since C must visit all nodes of G′ exactly once, for each node
v of G, if C wants to visit v(mid), and does not want to get “stuck”, it must
visit v(in), v(mid), v(out) one after the other, or v(out), v(mid), v(in), one after the
other.

156

Marco Calautti Notes of Computability and Computational Complexity

Observation 2. Note that two “out” nodes, or two “in” nodes are never
connected together in G′, but only “in” nodes with “out” nodes can be con-
nected.

By combining the two observations above, we conclude that C must be of
one of the follwing forms:

v
(in)
1 , v

(mid)
1 , v

(out)
1 , v

(in)
2 , v

(mid)
2 , v

(out)
2 , . . .

v
(out)
1 , v

(mid)
1 , v

(in)
1 , v

(out)
2 , v

(mid)
2 , v

(in)
2 , . . . ,

The above two patterns correspond to traversing a cycle in G by either
following all the arrows of the cycle in the right direction, or by following all
the arrows of the cycle in reverse direction, respectively. In any case, C never
“mixes” normal and inverse directions of the arrows in it. Hence, in both cases,
C corresponds to an Hamiltonian cycle of G.

Note that, if we did not use the middle nodes, C would be allowed to be,

for example, of the form v
(in)
1 , v

(out)
1 , v

(in)
2 , v

(out)
3 . That is, C enters v

(in)
2 , from

v
(out)
1 , and thus following the directed edge (v1, v2), but then it “skips” v

(out)
2

by going to v
(out)
3 , and thus following the directed edge (v3, v2) in opposite

direction w.r.t (v1, v2). With the middle nodes, we are guaranteed that once
C enters v(in), it must necessarily exit from v(out), and vice versa, because C
must visit v(mid), and that is the only chance to do it, if C does not want to get
“stuck”.

We are finally ready to prove that TSP is NP−complete. Indeed, this is
almost straightforward, since UNDIRECTED-HAMCYCLE is more or less a
special case of TSP, where each edge has weight 1.

Theorem 45. TSP is NP−complete

Proof. We have already shown TSP ∈ NP. The reduction from UNDIRECTED-
HAMCYCLE is straightforward. From an undirected graph G = (V,E), we
construct a pair (G′, k), where G′ is the weighted undirected graph obtained
from G, where each edge has weight 1, and the cost k = |V |. Clearly, if G has
an Hamiltonian cycle (which necessarily visits |V | edges), then G′ has an Hamil-
tonian cycle (actually the same), of cost at most (actually equal to) k = |V |. If
G has no Hamiltonian cycle, clearly, G′ has no Hamiltonian cycle of any cost,
let alone k.

Hence, from what we discussed at the beginning of this lecture, the search
version of TSP, i.e., computing the minimum cost of an Hamiltonian cycle on
a weighted undirected graph cannot be computed in polynomial time, unless
P = NP, because TSP is NP−complete.

157

Marco Calautti Notes of Computability and Computational Complexity

22 Exercises on TMs and undecidability

Consider the following language

L = {A#B#W1W
R
1 · · ·WnW

R
n | A,B,W1, . . . ,Wn ∈ {a, b, c, d}+ and

n = |A| − |B| and |Wi| ≥ |B| for each i = 1, . . . , n}.

For example, the string

aabcda︸ ︷︷ ︸
A

bda︸︷︷︸
B

bba︸︷︷︸
W1

abb︸︷︷︸
WR

1

cdab︸︷︷︸
W2

badc︸︷︷︸
WR

2

aabdc︸ ︷︷ ︸
W3

cdbaa︸ ︷︷ ︸
WR

3

is in L, because we have n = |A| − |B| = 6 − 3 = 3 strings Wi, each string Wi

is of length at least |B| = 3, and each Wi is followed by its reverse.
Devise a TM, possibly non-deterministic and with multiple tapes, that de-

cides the above language L.
The main idea of the TM is described below. The full control of the TM is

presented in the next page, instead. In the pictures, α is a symbol in {a, b, c, d}.

158

Marco Calautti Notes of Computability and Computational Complexity

22.1 Undecidability

Consider the following properties of TMs:

P1 = {< M >|M changes state at least once when executed with ϵ}.
P2 = {< M >|M never remains on the same state for two consecutive steps}.
P3 = {< M >|M accepts all inputs}.

Study the decidability of the above properties. Use Rice’s Theorem whenever
possible. Recall that < M > denotes the encoding of a TM M that only uses
the tape alphabet Γ = {0, 1,⊔}.

159

Marco Calautti Notes of Computability and Computational Complexity

P1. Is P1 trivial? That is, is it empty or the set of all TMs? No, because the
TM M1 that moves directed from q1 to qaccept, whatever is the read symbol is
in P1, but M2 that stays in q1 when reads ⊔ and goes to qaccept otherwise, is
not in P1. So, there are some TMs in P1, and some are not in P1.

Is P1 semantic? That is, is it the case that for every two TMs M1,M2, with
L(M1) = L(M2), when < M1 >∈ P1, then also < M2 >∈ P1? Consider the
TM M2 we discussed for proving P1 is not trivial. It never changes state when
the input is ϵ, and its language is L(M2) = {0, 1}∗ \{ϵ}. Then, consider the TM
M ′ that, from q1 goes to qaccept, when reading any symbol different from ⊔, and
when reading ⊔, it first moves from q1 to q′1, without moving the head. Then,
from q′1 moves to qaccept, by reading any symbol different from ⊔, otherwise it
stays in q′1, without moving the head. M ′ accepts the same language as M2,
but M2 is in P1, and M

′ is not. Thus, we cannot use Rice’s Theorem to prove
undecidability of P1.

For sure, P1 is in RE, because, given a TM encoding < M >, we can
simulate execution of M with input ϵ, and if it changes state, we accept. If
< M > changes some state with input ϵ, the procedure we described accepts.
If M does not change state (i.e., it loops), our procedure does not accept.

But we can do better. Actually, P1 is in R, i.e., it is decidable. Let M
be a TM given as input to our procedure. Observe that M changes state at
least once iff it moves from the initial state q1 to some other state. The rest of
M ’s code can be even ignored. Thus, we only need to focus on the part of the
transition δ ofM that takes q1 as input. Since we encode TMsM with alphabet
Γ = {0, 1,⊔}, we have only three possible useful entries in δ:

δ(q1, 0),
δ(q1, 1),
δ(q1,⊔).

Moreover, each δ(q1, α) returns a triple of the form (q′, β, ⋆), with q′ ∈ Q,
β ∈ {0, 1,⊔} and ⋆ ∈ {0, 1,⊔}. So, what really determines whether M changes
state is the above part of δ, plus of course the input string. But, the input
string is fixed, it is always ϵ, and in fact it is not part of our input (only M is).
The only part that actually depends on the input, which is the TM M , is the
state q′, the values all the other elements like β, ⋆, α, and even q1 can take are
independent of the specific TM we are given as input.

So, each of the three entries above can output one of |Q|·|{0, 1,⊔}|·|{L,R, S}| =
9 · |Q| possible triples. Note, however, that the actual value of the state q′ is ir-
relevant to understand if the TM moves from q1 to some state different from q1,
because once it does, it is irrelevant to which exact state q′ the machine moved.
So, actually, for an entry δ(q1, α), what is only important to know about its
output is 1) whether the new state q′ differs or not from q1, 2) which symbol β
is written, and 3) the head direction ⋆. Hence, we can very well replace q′ with
a simple bit that tells us if the state is different from q1 or not, and nothing
would change. Hence, each entry δ(q1, α) can output one among

|{0, 1}| · |{0, 1,⊔}| · |{L,R, S}| = 18

160

Marco Calautti Notes of Computability and Computational Complexity

possible triples. So, even if we consider infinitely many TMs M as input, their
three entries of the form δ(q1, α) must necessarily fall in one of the above 18
combinations.

Thus, for the purpose of deciding P1, a TM, no matter how large and com-
plex, can be seen as a string that specifies how each of the three entries δ(q1, α)
of its transition function looks like, according to the kind of information we dis-
cussed above. For example, we can use strings of the following form to represent
a TM:

(q1, 0) 7→ (b1, β1, ⋆1), (q1, 1) 7→ (b2, β2, ⋆2), (q1,⊔) 7→ (b3, β3, ⋆3).

If, for example, b1 = 1, β1 = 0, ⋆1 = L, the above string says that the corre-
sponding TM, when in state q1 and when reads the symbol 0, it moves to a state
different than q1 (because b1 = 1), writes the symbol 0, and moves the head to
the left.

How many strings of the above form can we have? Since there are 18 possible
triples (bi, βi, ⋆i), for each entry (q1, 0), (q1, 1), (q1,⊔), there are 18 · 18 · 18 =
183 = 5832 possible strings.

Some of these 5832 strings represent TMs that change their state, and others
represent TMs that do not change their state. We could now start checking each
of them, to understand which correspond to TMs changing state, but we can
simplify our life as follows. Say that L′ is the language made of only the strings
of the above form that represent the cases where the corresponding TM M
changes state. The language L′ is finite, and thus decidable. Hence, a TM that
decides P1 is the one that constructs the right string for the input TM, and
then executes the TM that decides L′.

Remark. Note that the above discussion is subtle, because even if we don’t
necessarily know which cases make the TM change state, and which not, since
there are finitely many, there exists a TM (which we don’t even known how
it looks like), that has the right correspondence hard-coded in its transition
function (this is possible, because there are only a constant number (5832)
of cases to consider). This discussion highlights the fact that our Theory of
Computation is not constructive. We do not require to be able to actually
construct an algorithm, to show a language is in a certain class. We only require
to prove that it exists.

P2. Is P2 trivial? No, because the TM that moves immediately from q1 to
qreject, whatever is the input string is in P2, but the TM M2 that loops in
q1, for every input symbol, without moving the tape head, is not in P2. Is P2

semantic? No, because the above TM M1 does not accept any string, i.e., it
accepts the empty language, and also M2 does not accept any string (because
it loops on q1, for every input symbol, without moving the head). Thus, even if
they accept the same language, one is in P2 and the other is not.

161

Marco Calautti Notes of Computability and Computational Complexity

We cannot apply Rice’s Theorem. We study the complement of P2. That is

P̄2 = {< M >| there is some input string w such that when M

runs on w, it remains on some state for two or more consecutive steps}.

We show P̄2 is in RE with the following procedure. Given < M >, guess a string
w, and simulate M with input w. If, during the simulation, there is a state in
which M stays for two or more consecutive steps, then accept. The idea is that,
if a string w with this property exists, then the procedure will find it, and halt
once M stays in the same state for two or more consecutive steps. However,
if such a string does not exist, our procedure does not necessarily reject, but
might loop, “waiting” for M to stay in the same state.

Can we do better? No, we prove P̄2 is undecidable. The observation is that,
given a TMM , if its transition function δ has some loop, i.e., δ(q, α) = (q, β, ⋆),
we can translate that loop in a two states loop, where we move from q to a new
state q′, i.e., δ(q, α) = (q′, β, ⋆), and then go back with the same transition, i.e.,
δ(q′, α) = (q, β, ⋆). Of course, every other transition that was exiting q now
must also exist q′, and every transition entering q, must also enter q′.

In this way, the new machine, call it M2, will never stay in the same state
for more than one step, because it has no self-loops. With this in mind, we
provide a simple reduction from the Universal language Lu. We must convert
a pair (M,w) to a TM M ′ such that, M accepts w iff there is a string w′ for
which M ′ remains on some state for two or more consecutive steps.

The reduction is simple. It constructs a TM M ′ that ignores its input, and
instead executes the “two-state” version of M , i.e., M2 over the string w, with
the addition that the accepting state is replaced with a new state q′ on which
M2 loops.

So, if M accepts w, M ′ executes M2 which until the very end, never stays
in the same state for more than one step, but when it reaches q′, it stays in the
same state forever, and thus for two or more consecutive steps.

If M does not accept w, the state q′ of M2 is never reached, and thus, since
M2 has been modified as we discussed before, it never stays in the same state for
more than one step. Hence P̄2 ∈ RE \ R. We conclude that P2 ̸∈ RE, because
if it was, since also its complement is in RE, it would imply that both P2 and
its complement are in R, which is not possible, as we have just shown P̄2 is not
in R.

P3. Is P3 trivial? No, because we have a TM M1 that always accepts, but
also some TM M2 that accepts not all strings, like the one accepting L01. Is P3

semantic? Consider two arbitrary TMs M1,M2 such that L(M1) = L(M2), and
assume < M1 >∈ P3. Since < M1 >∈ P3, L(M1) is the set of all strings, which
means also L(M2) is the set of all strings, and thus also < M2 >∈ P3. Thus,
P3 is semantic. Hence, since P3 is non-trivial and semantic, by Rice’s Theorem,
P3 is undecidable.

162

Marco Calautti Notes of Computability and Computational Complexity

Let us consider one last property of TMs.

P = {< M >|M halts after an even number of steps, when run on ϵ}.

P is clearly in RE, because we can just simulate M with input ϵ and count
the number of steps. When it ends, we check. Clearly, this procedure only
accepts TMs M that are in P, but if M is not in P, and thus it might not halt
at all with input ϵ, our procedure will loop as well, rather than rejecting.

Let us see if P is undecidable. Is P trivial? No, because we have a TM M1

that in one step accepts, regardless of the input, and thus halts in one step also
with ϵ, and we have M2 that accepts in two steps, regardless of the input. So,
M1 is not in P, and M2 is in P. Is P semantic? No, because the above two
TMs accept the same language (i.e., all strings), but one is in P and the other
is not.

We show P is not in R, by reducing HALT-ϵ to it. Recall that HALT-ϵ is the
language of all TMs encodings < M > such thatM halts with input ϵ. We must
construct, given a TM M , a TM M ′ such that M halts with ϵ iff M ′ halts with
ϵ in an even number steps. The trick is to modify M to perform one additional
step, whenever it performs one. That is, if the transition function δ of M has
a transition δ(q, α) = (q′, β, ⋆), we change it with two transitions. The first one
does nothing, and simply goes to an auxiliary state q∗, i.e., δ(q, α) = (q∗, α, S).
The second does what the original transition was doing, i.e., δ(q∗, α) = (q′, β, ⋆).
Thus, we doubled the number of steps of M , for whatever input, and thus also
ϵ. IfM halts with input ϵ, then the new machineM ′ also halts, but with double
the steps, and thus M ′ is in P.

If M does not halt with input ϵ, M ′ does not halt with input P, let alone,
within an even number of steps. So, P ∈ RE ̸∈ R.

163

Marco Calautti Notes of Computability and Computational Complexity

23 Exercises on NP−completeness

We prove more NP−complete languages, that will be both useful to have in
your “database” of NP−complete problems (the more, the easier should be to
find the right language to use when proving another language is NP−complete),
but will also serve as further practice.

23.1 SUBSETSUM

We consider first the problem SUBSETSUM. You are given a list of (not nec-
essarily distinct) natural numbers c1, . . . , cn, and an additional natural number
k ∈ N. The question is whether there is a subset I ⊆ {1, . . . , n} of indices, such
that

∑
i∈I ci = k, i.e., you can select certain numbers from the list once, in

such a way that their sum equals k. We thus, formally define the corresponding
language as:

SUBSETSUM = {(c1, . . . , cn, k) | c1, . . . , cn, k ∈ N and

there is I ⊆ {1, . . . , n} s.t.
∑
i∈I

ci = k}.

Theorem 46. SUBSETSUM is NP−complete.

Proof. Showing membership in NP is easy. Guess a set I ⊆ {1, . . . , n} by
simply iterating over each number ci in the list, and guessing if i should belong
to I. Then, sum all the numbers with index in I and verify the sum equals
k. The set I is of size at most linear in the input, and summation is clearly a
polynomial-time operation.

We prove NP−hardness by reducing EXACT-3-SAT to SUBSETSUM. Con-
sider a Boolean formula in CNF of the form:

φ = C1 ∧ · · · ∧ Cm,

where each clause Ci = (ℓ1 ∨ ℓ2 ∨ ℓ3) contains three literals.
Let x1, . . . , xn be the Boolean variables of φ. We construct the list of num-

bers as follows. For each Boolean variable xi, two numbers, that we call ti and
tf , are in the list. The idea is to represent choosing “true” for xi with choosing
the number ti, and “false” with choosing fi.

The number ti is made of n+m digits in base 10, i.e., it is of the form

a1 · · · anp1 · · · pm,

where each symbol is a digit in {0, 9}. We set digit ai = 1, and the other aj = 0.
Moreover, we set pj = 1 if the clause Cj contains xi without negation, otherwise
pj = 0. The number fi is defined in a similar way, it is of the form:

fi = a1 · · · anp1 · · · pm.

The symbols a1, . . . , an are defined in the same way as for ti. Instead, we have
that pj = 1 if xi appears negated in clause Cj , otherwise pj = 0.

164

Marco Calautti Notes of Computability and Computational Complexity

For example, if

φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ x3),

the set list is made of the following numbers, with 3+4=7 digits:

a1 a2 a3 p1 p2 p3 p4
t1 = 1 0 0 1 1 0 1
f1 = 1 0 0 0 0 1 0
t2 = 0 1 0 1 0 1 0
f2 = 0 1 0 0 1 0 1
t3 = 0 0 1 1 0 0 1
f3 = 0 0 1 0 1 0 0

Let τ be some truth assignment for the variables x1, . . . , xn, if τ(xi) = true,
we choose the number ti, otherwise we choose fi. Note that choosing the num-
bers in the list in this way, the sum of these numbers corresponds to a number
of the form

11 · · · 1︸ ︷︷ ︸
n

s1 · · · sm.

That is, the first n digits are all 1, moreover sj denotes how many literals make
the clause Cj true, because of this assignment. For example, the assignment x1
= false, x2 = false, x3 = true corresponds to choosing f1, f2, t3. Thus

f1 + f2 + t3 = 1112203.

The above means the assignment makes 2 literals of C1 true, 2 literals of C2

true, 0 literals of C3 true, and 3 literals of C4, true. Clearly, as far as the first
n digits are all 1’s and the last m digits are all non-zero, the choice represents
an assignment satisfying the formula.

The problem is that we need this sum to be a precise number, and not any
number of the form described above. Since each clause has 3 literals, the last m
digits s1, . . . , sm are no greater than 3. So, it is enough to add to the list some
“dummy” numbers, that we can select to “help” the last m digits become all
3 (without of course making them equal to 3 trivially), and at the same time,
should not affect the first n digits of the final sum.

For this, we add, for each clause Cj , two copies uj , vj of the same number,
which has all digits equal to 0, except for the n+ j-th digit, which is 1. So, our
final list, for the example formula is:

165

Marco Calautti Notes of Computability and Computational Complexity

a1 a2 a3 p1 p2 p3 p4
t1 = 1 0 0 1 1 0 1
f1 = 1 0 0 0 0 1 0
t2 = 0 1 0 1 0 1 0
f2 = 0 1 0 0 1 0 1
t3 = 0 0 1 1 0 0 1
f3 = 0 0 1 0 1 0 0

u1 = 0 0 0 1 0 0 0
v1 = 0 0 0 1 0 0 0
u2 = 0 0 0 0 1 0 0
v2 = 0 0 0 0 1 0 0
u3 = 0 0 0 0 0 1 0
v3 = 0 0 0 0 0 1 0
u4 = 0 0 0 0 0 0 1
v4 = 0 0 0 0 0 0 1

Note that the new numbers alone cannot make any of the last m digits equal to
3. They still need the “help” of some other number corresponding to choosing
a value for a variable that makes the corresponding clause true. Moreover, to
have all first digits to 1, we still need to choose one of ti or fi for each variable.
So, the number k we need to construct is (in base 10):

k = 11 · · · 1︸ ︷︷ ︸
n

33 · · · 3︸ ︷︷ ︸
m

.

23.2 KNAPSACK

A famous generalization of SUBSETSUM, is the so-called KNAPSACK prob-
lem. Here you are given n items, in the form of two lists of n natural numbers:
w1, . . . , wn ∈ N are the weights that each item has, and v1, . . . , vn ∈ N are the
values of each item (i.e., how much they are worth, or important, etc.). Then,
you are given a maximum weight W ∈ N, and a minimum value V ∈ N, and the
question is, can you choose a subset of the items, i.e., a set I ⊆ {1, . . . , n} such
that ∑

i∈I

wi ≤W
∑
i∈I

vi ≥ V.

That is, we don’t exceed the maximum weight and we also have an overall value
at least as large as the minimum.

KNAPSACK = {(w1, . . . , wn, v1, . . . , vn,W, V) |
w1, v1, . . . , wn, vn,W, V ∈ N, and there is I ⊆ {1, . . . , n} s.t.∑

i∈I

wi ≤W and
∑
i∈I

vi ≥ V }.

166

Marco Calautti Notes of Computability and Computational Complexity

Theorem 47. KNAPSACK is NP−complete

Proof. Membership in NP is straightforward. Guess the indices in I, and verify.
For the hardness, it is enough to observe that SUBSETSUM is a special case of
KNAPSACK. In fact, an instance of SUBSETSUM (c1, . . . , cn, k) can be seen
as an instance of KNAPSACK where each weight wi and value vi coincide with
ci, and W = V = k.

23.3 DOMINATINGSET

We now move to a language over graphs. It is very similar to vertex cover.
Consider an undirected graph G = (V,E). A dominating set of G is a set of
nodes D ⊆ V such that every node is “touched” by some node in D, i.e., for
each v ∈ V \D, there is a node u ∈ D such that {u, v} ∈ E. The difference with
vertex cover is that a vertex cover must touch every edge of the graph, while a
dominating set touches every node of the graph. The following example shows
that the two notions do not necessarily coincide:

The red nodes are a dominating set, but they are not a vertex cover, because
the first vertical edge, from the left, is not touched by the red nodes. Note that
every graph G has a dominating set, i.e., the complete set of nodes V . So, what
is interesting to ask is if there is a dominating set of size at most some k.

DOMINATINGSET = {(G, k) | G is an undirected graph, and

G has a dominating set D such that |D| ≤ k}.

Theorem 48. DOMINATINGSET is NP−complete

Proof. We can decide DOMINATINGSET by guessing a set D ⊆ V , and then
verify that every node in v ∈ V \D is connected by an edge with a node in D.
|D| is of size at most linear, and the second check requires |V | iterations, and
in each iteration we need to try each node u in D and verify there is an edge
between u and the current node. So, we need O(|V | · |D| · |E|) = O(|V |2 · |E|)
steps, hence polynomial.

We prove NP−hardness via a reduction from VCOVER. Indeed, there are
quite some similarities between a vertex cover and a dominating set.

We must convert a pair (G, k) to a pair (G′, k′) such that G has a vertex
cover of size at most k iff G′ has a dominating set of size at most k′.

The reduction first sets k′ := k. Note that if a graph G has no isolated
nodes, than, every vertex cover V C of G is also a dominating set of G. This is
because V C touches all edges, and since there are no isolated nodes, every node

167

Marco Calautti Notes of Computability and Computational Complexity

is connected to some edge, that V C necessarily “touches”, and thus, every node
outside V C is connected to some node in V C. So, our reduction first removes
all isolated vertices in G.

However, as we have seen in the example above, even in graphs without
isolated nodes, the other direction might not be true, i.e., we can have a dom-
inating set that is not a vertex cover. So, we need to force, in our graph G′

that a dominating set contains at least one node for each edge. To do this, we
further modify G, by converting each edge e = {u, v} ∈ E in a triangle, i.e.,
we connect u and v to a new special node ve, not connected to anything else.
We so obtain G′. In this way, if a dominating set “wants” to dominate the new
nodes, it must choose at least one of the nodes in an original edge of the graph
G.

So, if G has a vertex cover V C of size at most k, then when removing from
V C all isolated nodes, we obtain a set V C ′ of size necessarily at most k, and
V C ′ must be a vertex cover of for the subgraph of G that has no isolated nodes.
From what we discussed, we conclude that V C ′ is also a dominating set for such
a subgraph. Thus, in the final graph G′, since the new nodes ve are connected
to some node of this subgraph, we conclude that V C ′ is also a dominating set
for G′.

Assume G′ has as dominating set D such that |D| ≤ k′. Note that each
special node ve is connected to both nodes of the edge e = {u, v}, and thus
dominates u and v. However, if D contain ve and we replace it with u in the set
D, D now dominate v and ve. So, if the dominating set D contains a special
node ve, we can safely remove it from D, and add u or v to D instead (if it is
not in D already), and still obtain a dominating set D′ (i.e., no nodes are left
out). The size of D′ can only decrease, with this operation, and thus it is still
of size at most k′. Now D′ contains only nodes of the original graph G. Since
D′ is dominating, and thus must be connected to all nodes not in D′, among
the nodes not in D′ we have all the special nodes ve. The only way for D′ to
be connected to such nodes, is to contain at least one node for each edge of the
original graph G, and thus it is a vertex cover of G of size at most k′ = k.

168

Marco Calautti Notes of Computability and Computational Complexity

24 More exercises on NP−completeness and Search
problems

RESTAURANT. Consider the following problem, called RESTAURANT.
You are given a set of n people P = {1, . . . , n}, a set of k tables T = {1, . . . , k},
and for each person i ∈ P , you are given a set Li of people that i does not like.
Your job, as the owner of the restaurant, is to assign to each person a table,
without placing two people at the same table, where one dislikes the other.

Provide a formal definition of RESTAURANT in terms of languages, and
prove RESTAURANT isNP−complete (hint: VCOLORING isNP−complete).

So, a valid input is a tuple (P, T, L1, . . . , Ln), where P is a set of n integers,
T a set of m integers, and Li is a set of integers of size at most n. We define a
table assignment as a function τ from people P to tables T such that, for every
two people i, j ∈ P such that i ∈ Lj or j ∈ Li, τ(i) ̸= τ(j)

RESTAURANT = {(P, T, L1, . . . , Ln) | (P, T, L1, . . . , Ln) is a valid input

which has a table assignment}.

People in the restaurant can be seen as nodes of a graph, that are connected,
whenever one does not like the other. A table is a color that we do not want to
assign to two people that do not like each other.

Theorem 49. RESTAURANT is NP−complete.

Proof. To show that RESTAURANT is in NP we provide the following non-
deterministic procedure. Given (P, T, L1, . . . , Ln), guess for each person i ∈ P ,
a table ti ∈ T . Then verify that for every person i ∈ P , and every person
j ∈ Lj , ti ̸= tj . The algorithm needs to guess |P | tables, one per person. Then,
verifying the latter check, requires trying for every person i in P at most |P |
people in Li, so O(|P |2). Hence, the procedure is polynomial. The procedure
is correct, because if there is a table assignment, the procedure will guess that
assignment, and the final check will succeed. If there is not table assignment,
whatever tables the procedure guesses for each person, will not pass the final
check, and thus all computation paths are rejecting.

As discussed above, there is quite a similarity between VCOLORING and
RESTAURANT. Recall that VCOLORING is the language of pairs (G, k),
where G is an undirected graph, and k a number of available colors, such that
there is a k-coloring for the nodes ofG, i.e., there is a function µ : V → {1, . . . , k}
that maps nodes to colors such that, for every two nodes u, v ∈ V , if {u, v} ∈ E,
then µ(v) ̸= µ(u).

We construct, from (G, k), with G = (V,E), a string (P, T, L1, . . . , Ln) such
that G has a k-coloring iff there is a table assignment for (P, T, L1, . . . , Ln). As
discussed already, we let P = V , and for each i ∈ P , we let Li be the set of
nodes of G to which i is connected. Finally, T = {1, . . . , k′}, where k′ = k is
the number of colors.

169

Marco Calautti Notes of Computability and Computational Complexity

Note that the above procedure is not polynomial. The reason is because
it writes the set T = {1, . . . , k′}, which contains k′ = k elements. So, the
procedure requires time linear in k. However, k is an integer encoded in binary.
So, if it requires m bits, in the worst case, k = 2m − 1. Thus, the procedure
requires time that is O(2m), and thus exponential in the size of the encoding of
the input. To avoid this problem, we modify our procedure as follows:

1. If k ≥ |V |, then set k′ := |V |.

2. else k′ := k.

3. Construct the string (P, T, L1, . . . , Ln) as discussed before.

What the reduction does is to first check if the number of colours is more or
the same as |V |. If this is the case, note that G trivially has a k-coloring, i.e.,
assign a different colour to each node. In particular, we still have a coloring,
even if we reduce the number of colours to exactly |V |. Thus, if the input (G, k)
has more colours than needed, also the tables would be more than needed. Thus,
we simply do not use all of them, but only at most |V |. Hence, in the second
phase, the reduction constructs a set T which will always contain at most |V |
tables, and thus will always require polynomial time.

Assume G has a k-coloring µ, and in particular, assume k ≤ |V |.25 Then,
consider the function τ = µ. Since µ assigns a colour from {1, . . . , k} to each
node, τ assigns a table from T to each person, by construction of P and T .
Then, since for every two nodes i, j ∈ V , µ(i) ̸= µ(j), whenever {i, j} ∈ E, and
since there is an edge {i, j} ∈ E iff i ∈ Lj and j ∈ Li, for every two people
i, j ∈ P , τ(i) ̸= τ(j), whenever i ∈ Lj , or j ∈ Li. Thus, τ is a table assignment.

Assume τ is a table assignment for (P, T, L1, . . . , Ln). Note that for every
two pepole i, j ∈ P , if i ∈ Lj or j ∈ Li, then {i, j} ∈ E. Thus, since for every
two people i, j ∈ P , τ(i) ̸= τ(j),when i ∈ Lj or j ∈ Li, it implies that µ = τ is
also a k′-coloring for G, where k′ = k.

LABELS. Consider the following problem, called LABELS. You are given as
input an undirected graph G = (V,E), two integers k, k′, and a setX of integers,
called labels. The question is whether we can assign a label from X to each node
v ∈ V , call it pv, such that the sum of the labels of all nodes is strictly smaller
than k, i.e.,

∑
v∈V pv < k, and the sum of the cost of each edge e ∈ E of G, call

it Ce, is at least k′, i.e.,
∑

e∈E Ce ≥ k′. The cost of an edge e = {u, v} ∈ E is
simply the maximum label between pu and pv, i.e., Ce = max{pu, pv}.

Provide a formal definition of LABELS in terms of languages, and prove
LABELS is NP−complete (hint: VCOVER is NP−complete).

We can define a valid input of LABELS as a string of the form (G, k, k′, X),
where G is an undirected graph, k, k′ are integers, and X is a set of integers.

25This assumption is without loss of generality, since if k ≥ |V |, we know that we also have
another coloring using just |V | colors.

170

Marco Calautti Notes of Computability and Computational Complexity

We define a labeling of (G, k, k′, X), with G = (V,E), as a function ℓ : V → X
such that

∑
v∈V ℓ(v) < k and

∑
{u,v}∈E max{ℓ(u), ℓ(v)} ≥ k′.

LABELS = {(G, k, k′, X) | (G, k, k′, X) is a valid input that has a labeling}.

Theorem 50. LABELS is NP−complete.

Proof. given (G, k, k′, X), a non-deterministic procedure that decides if (G, k, k′, X) ∈
LABELS is the following. For each node v ∈ V , guess a value pv ∈ X. Verify
that the values sum up to a number strictly smaller than k. Then, for each
edge {u, v} ∈ E, compute its cost and sum it up to a count. Verify it is at
least k′. The total labels, one for each node, take up |V | ·m space, where m is
the number of bits used to encode a number in X. Thus, they can be guessed
in polynomial time. Then, the first summation requries summing |V | numbers.
The second summation requires summing up |E| numbers, where each number
can be computed by simply comparing the two edge’s nodes. So, the overall
procedure is polynomial. The procedure is correct, because if a labeling exists,
the procedure will guess it, and properly verify it. If a labeling does not exist,
whatever labels it guesses for the nodes, they will not pass the later checks, and
thus it will reject on all its computation paths.

We now prove LABELS is NP−hard. There is a high similarity between
LABELS and VCOVER. A vertex cover is a set of nodes that “covers” all
edges of the graph, i.e., each edge has at least one end point part of the vertex
cover. LABELS is a generalization of this idea. In fact, if X = {0, 1}, i.e.,
we can only label a node with only 0 or 1, assigning a label to a node, means
choosing the node, or discarding it. Hence, the first summation

∑
v∈V pv is

essentially counting how many nodes we have chosen, and the second summation∑
{u,v}∈E max{pu, pv} is counting how many egdes are “touched” by the chosen

nodes.
Thus, given a string (G, k), we construct a string (Ḡ, k̄, k̄′, X) such that G

has a vertex cover of size at most k iff (Ḡ, k̄, k̄′, X) has a labeling, as follows.
Ḡ = G, the set of labels is X = {0, 1}. Since the first sum must be strictly
smaller than k̄, and we said it counts how many nodes we selected, we let
k̄ = k + 1. Finally, since the second summation counts the number of touched
edges, we want to touch all of them, and thus k̄′ = |E|.

The reduction is clearly polynomial, since we are essentially copying G, and
counting the number of nodes and edges of G.

Assume (G, k) ∈ VCOVER, i.e., G has a vertex V C cover of size at most k.
Then, consider the function ℓ such that ℓ(v) = 1 if v ∈ V C, and 0 otherwise.
Thus,

∑
v∈V ℓ(v) = |V C|. Since |V C| ≤ k, and since k̄ = k + 1, the summation

is strictly less than k̄. Moreover, since V C is a vertex cover, i.e., for each
{u, v} ∈ E, either u or v is in V C, it means that the cost of each edge in Ḡ is 1.
Hence,

∑
{u,v}∈E max{ℓ(u), ℓ(v)} = |E|, which is greater or equal than k̄′ = |E|.

Hence, ℓ is a labeling.

Assume now that ℓ is a labeling of (Ḡ, k̄, k̄′, X). Thus, let V C be the set
of all nodes v of Ḡ such that ℓ(v) = 1. Since ℓ is a labeling, and X = {0, 1},

171

Marco Calautti Notes of Computability and Computational Complexity

the first summation
∑

v∈V ℓ(v) coincides with the size of V C and it is strictly
less than k̄. But, k̄ = k + 1, and thus |V C| ≤ k. It remains to show that
V C is a vertex cover of G. Again, since X = {0, 1}, the second summation∑

{u,v}∈E max{ℓ(u), ℓ(v)} is the number of edges having at least an end point

in V C, and since ℓ is a labeling, this summation is equal to k̄′ = |E|, and thus,
every edge has an end point in V C, which implies V C is a vertex cover.

Consider now the search problem MAX-LABELS. The input is an undirected
graph G, an integer k and a set of integers X. The output is the largest k′ such
that (G, k, k′, X) ∈ LABELS. Find the smallest possible complexity class in
which MAX-LABELS belongs.

We can solve MAX-LABELS with a polynomial-time TM using an oracle
for LABELS. In particular, the procedure does the following. Let (G, k,X) be
the input.

1. Let a = 0 and let b = |E| · x, where x is the largest label in X;

2. while a < b, do

3. (a) Let k′ = ⌊(a+ b)/2⌋;
(b) If (G, k, k′ + 1, X) ∈ LABELS, then let a = k′ + 1;

(c) Else if (G, k, k′) ∈ LABELS, then write k′ and halt;

(d) Else let b = k′ − 1;

4. Write ⊥.

The above algorithm performs O(log2 C) iterations, where C is the value
|E| · x, which essentially is the maximum value the sum of all edges costs can
be. Summing two numbers, one having n bits and the other m bits can lead at
most to a number using max{m,n}+ 1 bits. So, if the labels in X are encoded
in binary, using m bits each, the number C = |E| · x requires at most |E| +m
bits. Thus, C ∈ O(2|E|+m). Hence, the iterations are O(|E|+m), i.e., linear in
the size of the input. Hence, MAX-LABELS is in FPNP.

MAX-LABELS cannot be in FP, unless P = NP, because we can decide
LABELS as follows. Given (G, k, k′, X), compute via the above algorithm, using
input (G, k,X) the maximum cost C. Then, verify if C ≥ k′, in which case
accept, otherwise reject. Hence, if MAX-LABELS were in FP, we would solve
the NP−complete language LABELS in polynomial time, implying P = NP.

NOAH’S ARK. We now consider another decision problem, called NOAH’S
ARK. We are given a numberm, denoting the total number of species of animals.
We would like to have one animal for each species in our ark, to save them from
the great flood. However, are only allowed to place at most k different species
in the ark. So, you are also given an m×m matrix S of numbers, that encodes
the similarity between two species, i.e.,g S[i][j] is the similarity between species
i and j (the matrix S is symmetric).

172

Marco Calautti Notes of Computability and Computational Complexity

Given an additional number ℓ, a representative set of species is a set X ⊆
{1, . . . ,m} of species that is smaller than k, i.e., |X| ≤ k, but still, each species
j in {1, . . . ,m} is represented by some species i ∈ X, with a similarity of at
least ℓ. That is, for each species j ∈ {1, . . . ,m}, either j ∈ X, or there is i ∈ X
such that S[i][j] ≥ ℓ.

The goal, given the m×m matrix S, the ark capacity k, and the similarity
threshold ℓ, is to decide whether there exists a representative set of species X,
as defined above.

Prove that NOAH’S ARK is NP−complete (hint: reduce from DOMINAT-
ING SET).

Theorem 51. NOAH’S ARK is NP−complete.

Proof. The language is in NP, as we can simply guess a set X ⊆ {1, . . . ,m},
which is of polynomial size. Verify |X| ≤ k is easy. To verify that each species
j ∈ {1, . . . ,m} is represented, we need to iterate j over m elements, and for
each such element, iterate all elements i in X and verify if i = j or S[i][j] ≥ ℓ.
So, it requires at most iterations, and at each iteration, we need to access the
entry S[i][j]. Accessing the entry in a matrix by a TM is not a constant time
operation, because it has to scan the matrix to find the right position. So, it
requires m2 steps as well, and thus the overall check requires O(m4), which is
anyway polynomial.

Following the suggestion, let us see if there are some similarities between
DOMINATING SET and NOAH’S ARK. In an undirected graph G = (V,E),
a dominating set, is a set of nodes D that is able to reach every other node,
with a single edge, i.e., ∀v ∈ V \D, there is an edge between v and a node of
D. A representative set of species X essentially plays the role of a dominating
set, because it must “reach”, via a minimum similarity, all the other species left
out.

Our reduction does the following. Given a pair (G, k), it constructs a triple
(S, k′, ℓ) such that G has a dominating set of size at most k iff there is a rep-
resentative set of species X for (S, k′, ℓ). Let G = (V,E). We let the matrix
S be a |V | × |V | matrix, where S[i][j] = 1, if there is an edge between nodes
i, j ∈ V , otherwise S[i][j] = 0. Essentially, S represents the adjacency matrix
of the graph G. Since X will represent our Dominating set of size at most k,
we let k′ = k. Finally, since we are only interested in “reaching” every other
species, without caring on the amount of similarity, we let ℓ = 1.

The reduction is polynomial, as it requires O(|V |2) steps to build S. Setting
k′ and ℓ is straightforward.

Assume G has a dominating set D of size at most k. Then, the set of species
X = D is surely such that |X| ≤ k′ = k. Moreover, since every other node
v ∈ V \ D is connected with an edge to some node i in D, for every species
j ∈ {1, . . . ,m}, when j ̸∈ X, we have that S[i][j] = 1, by construction of S.
Since ℓ = 1, S[i][j] ≥ ℓ, and thus X is a representative set of species.

Assume X is a representative set of species for (S, k′, ℓ). Let D = X. Since
X is a representative set, |X| ≤ k′, and thus |D| ≤ k′ = k. Moreover, for every

173

Marco Calautti Notes of Computability and Computational Complexity

species j ∈ {1, . . . ,m}, when they are not in X, are such that S[i][j] ≥ ℓ = 1,
for some species i ∈ X. This means that for every node j ∈ V , when j ̸∈ V \D,
there is an edge between j and a node i ∈ D. This is the very definition of
dominating set, and the claim follows.

Consider now the search problem MAX-NOAH’S ARK. The input is the
matrix S and the ark capacity k. The output is the largest similarity ℓ for
which we can find a representative set of species, i.e., ℓ is the maximum number
such that (S, k, ℓ) ∈ NOAH’S ARK.

Once again, we can employ a TM with an oracle for NOAH’S ARK. We
simply need to decide the right initial interval. Since we are looking for the
largest similarity, the initial interval is [0, C], where C is the maximum number
that appears in a cell of the matrix S. This is the maximum similarity we can
hope to get. The binary search algorithm is then identical to the one shown for
LABELS, and since C is a number of the input encoded in binary, the value of
C is exponential, and thus MAX-NOAH’S ARK is in FPNP.

It turns out, however, that this time, even if C is very large, we can find a
clever way to reduce the number of calls to the oracle. Note that it is not really
important to know the actual values that are in the matrix S, as far as we are
able to compare them with the current maximum ℓ. Indeed, there can be at
most m×m different numbers in the matrix S. Let us say the following are the
unique numbers in the matrix S (ordered from smallest to largest):

a1, a2, . . . , ap,

with p ≤ m2. No matter how many bits they contain, we can replace each
ai in the matrix with the number i. Thus, we map the above numbers to the
numbers:

1, 2, . . . , p.

Since p ≤ m2, a number in 1, . . . , p can be encoded using O(log2m
2) bits. So,

assume we first convert S as discussed, and then run our binary search algorithm.
Now, the initial interval is [0,m2] in the worst case, hence it requires O(log2m

2)
iterations. However, when the algorithm finally finds the optimal value ℓ, this
is a number among 1, . . . , p. But we need to output the right number w.r.t.
the original matrix S. Since ℓ is among the number in 1, . . . , p, we just convert
ℓ back to its corresponding number aℓ, and output it. Hence, MAX-NOAH’S
ARK is in FPNP[log2 n].

Remark. Why did we not apply the same trick for LABELS? The reason why
this approach will not work for LABELS is because there, the labels of the nodes,
are not simply compared between each other, but are also summed together. For
example, If we had labels X = {10, 34}, and we “scale them down” to labels 1,2,
even though sum of the labels 10 + 34 = 44 and 10 + 10 + 10 = 30 are different
numbers, summing the corresponding labels, we obtain the numbers 1 + 2 = 3
and 1 + 1 + 1 = 3, which are the same. So, if we apply this approach, and find

174

Marco Calautti Notes of Computability and Computational Complexity

the maximum value k′, w.r.t. the new scale, and say we obtain k′ = 3, since we
have to convert k′ back to a value that is in the scale of the original labels, we
do not know exactly to which value k′ corresponds. Is it 44 or 30?

175

	Problems, Algorithms and a glimpse of undecidability
	Alphabets, strings, languages and Turing Machines
	Introduction to Turing Machines

	Input size, execution time and power of TMs
	The Power of TMs

	Non-deterministic TMs and Exercises on TMs
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Universality, Limits of TMs and Computational Classes
	The Universal TM
	Limits of TMs
	Computational Classes
	Properties of recursive and recursively enumerable languages

	Universal Language and the Halting Problem
	The Halting problem

	Reductions and the Le, Lne languages
	Emptiness of a TM's language

	More on Reductions
	Post Correspondence Problem (PCP)
	The Tiling Problem

	Rice's Theorem
	More exercises on TMs and undecidability
	Introduction to Computational Complexity
	The Complexity class P
	The Complexity class NP

	P vs NP and NP-completeness
	NP-complete languages
	Another NP-complete language

	Some NP-complete languages
	Independent set
	Vertex Cover
	Clique

	More NP-complete languages
	Binary Integer Programming
	Vertex Coloring

	Alternative definition of NP
	Cook's Theorem
	Some remarks on the proof

	Complements of NP languages and other time classes
	coNP
	EXP and NEXP

	Space Complexity, and the classes LOGSPACE and NL
	The space classes LOGSPACE and NL

	Savitch's Theorem
	Turing Machines with Oracles, the Polynomial Hierarchy, and Search Problems
	The Travelling Salesman Problem
	Directed Hamiltonian cycle

	Exercises on TMs and undecidability
	Undecidability

	Exercises on NP-completeness
	SUBSETSUM
	KNAPSACK
	DOMINATINGSET

	More exercises on NP-completeness and Search problems

