Lezione di Informatica Teorica: NP-Completezza Exact Cover e Knapsack

Appunti da Trascrizione Automatica

24 Aprile 2024

Indice

1		oduzione alle Classi di Complessità Definizioni Fondamentali	2
2	Exa	ct Cover	2
	2.1	Membership in NP	2
	2.2	Hardness (Riduzione da 3-SAT)	3
		2.2.1 Costruzione dell'Istanza (U_{ϕ}, F_{ϕ})	3
		2.2.1 Costruzione dell'Istanza (U_{ϕ}, F_{ϕ})	5
3	Kna	apsack (Problema della Bisaccia)	6
	3.1	Definizione dell'ottimizzazione e della decisione	6
	3.2	Membership in NP (Versione Decisione)	7
	3.3	Hardness (Riduzione da Exact Cover)	7
		Definizione dell'ottimizzazione e della decisione Membership in NP (Versione Decisione) Hardness (Riduzione da Exact Cover) 3.3.1 Costruzione dell'Istanza di Knapsack	7
		3.3.2 Dimostrazione dell'Equivalenza	9
	34		10

1 Introduzione alle Classi di Complessità

Questa lezione conclude l'introduzione esplicita alla classe NP, prima di esplorare altre classi di complessità come la complessità spaziale e le classi di funzioni (problemi di calcolo piuttosto che di decisione). Verrà inoltre dimostrato il Teorema di Cook nella prossima lezione, che stabilisce che SAT è NP-completo.

1.1 Definizioni Fondamentali

Definizione 1 (Problema NP-Completo). *Un problema di decisione L è NP-completo se*:

- 1. $L \in NP$ (appartiene alla classe NP).
- 2. $L \wr NP$ -hard (almeno "duro" quanto tutti i problemi in NP), ovvero ogni problema $L' \in NP \wr riducibile$ a L in tempo polinomiale ($L' \leq_P L$).

Definizione 2 (Problema NP-Hard). *Un problema L* è NP-hard se ogni problema $L' \in NP$ è riducibile a L in tempo polinomiale ($L' \leq_P L$).

È importante sottolineare che le classi P e NP, e i concetti di NP-hard e NP-completo, si applicano esclusivamente ai **problemi di decisione**.

Esempio 1. Problema di Somma:

- **Problema di calcolo:** "Sommare due numeri". Questo non è un problema di decisione e quindi non rientra nelle classi P o NP.
- **Problema di decisione:** "Dati tre numeri a, b, c, è vero che c = a + b?" Questo è un problema di decisione e, poiché risolvibile in tempo polinomiale, rientra nella classe P.

Oggi analizzeremo due problemi NP-completi: Exact Cover e Knapsack.

2 Exact Cover

Definizione 3 (Exact Cover). *Input: Una coppia* (*U*, *F*) *dove:*

- $U = \{u_1, u_2, \dots, u_N\}$ è un insieme finito di oggetti, chiamato universo.
- $F = \{S_1, S_2, ..., S_M\}$ è una famiglia di sottoinsiemi di U, ovvero $S_i \subseteq U$ per ogni $j \in \{1, ..., M\}$.

Domanda: Esiste un sottoinsieme $F' \subseteq F$ tale che gli insiemi in F' formano una partizione di U? Una partizione di U significa che gli insiemi in F' sono a due a due disgiunti (cioè $S_a \cap S_b = \emptyset$ per ogni $S_a, S_b \in F', a \neq b$) e la loro unione è uguale a U (cioè $\bigcup_{S \in F'} S = U$).

2.1 Membership in NP

Exact Cover è in NP. Per dimostrarlo, è sufficiente mostrare che data un'istanza YES, possiamo verificare la soluzione in tempo polinomiale.

• **Guess (Indovina):** Un certificato per un'istanza YES di Exact Cover è il sottoinsieme $F' \subseteq F$ che si afferma essere la partizione.

- Check (Verifica): Data F', possiamo verificare in tempo polinomiale se:
 - 1. Tutti gli insiemi in F' sono a due a due disgiunti.
 - 2. L'unione di tutti gli insiemi in F' è uguale all'universo U.

Queste verifiche possono essere eseguite in tempo polinomiale rispetto alla dimensione dell'input.

2.2 Hardness (Riduzione da 3-SAT)

Dimostriamo che Exact Cover è NP-hard riducendolo da 3-SAT (che sappiamo essere NP-completo). Sia ϕ un'istanza di 3-SAT. ϕ è una formula booleana in forma normale congiuntiva (CNF), composta da L clausole C_1, \ldots, C_L , dove ogni clausola C_j contiene esattamente 3 letterali: $C_j = (\lambda_{j,1} \vee \lambda_{j,2} \vee \lambda_{j,3})$. Sia N il numero di variabili in ϕ . Dobbiamo costruire una funzione polinomiale f che trasforma ϕ in un'istanza (U_{ϕ} , F_{ϕ}) di Exact Cover tale che ϕ è soddisfacibile se e solo se (U_{ϕ} , F_{ϕ}) è un'istanza YES di Exact Cover.

2.2.1 Costruzione dell'Istanza (U_{ϕ}, F_{ϕ})

- **1. Universo** U_{ϕ} : L'universo U_{ϕ} è costruito per rappresentare le variabili, le clausole e i letterali della formula ϕ . $U_{\phi} = \{ \text{var}_1, \dots, \text{var}_N \} \cup \{ c_1, \dots, c_L \} \cup \{ l_{j,k} \mid j \in [1,L], k \in [1,3] \}$
 - var_i : Un oggetto per ogni variabile x_i in ϕ .
 - c_i : Un oggetto per ogni clausola C_i in ϕ .
 - $l_{i,k}$: Un oggetto per ogni letterale $\lambda_{i,k}$ in ϕ .
- **2. Famiglia di Sottoinsiemi** F_{ϕ} : La famiglia F_{ϕ} contiene diversi tipi di insiemi, progettati per simulare l'assegnazione di verità e la soddisfazione delle clausole.
 - 1. **Insiemi di assegnamento variabile (Type 1):** Per ogni variabile x_i ($i \in [1, N]$), creiamo due insiemi:
 - $T_i^{true} = \{ \text{var}_i \} \cup \{ l_{j,k} \mid \text{il letterale } \lambda_{j,k} \wr \neg x_i \}$ (Questo insieme "copre" l'oggetto var_i e tutti gli oggetti $l_{j,k}$ corrispondenti a letterali che diventerebbero falsi se x_i fosse assegnata a TRUE).
 - $T_i^{false} = \{ \text{var}_i \} \cup \{ l_{j,k} \mid \text{il letterale } \lambda_{j,k} \grave{e} x_i \}$ (Questo insieme "copre" l'oggetto var_i e tutti gli oggetti $l_{j,k}$ corrispondenti a letterali che diventerebbero falsi se x_i fosse assegnata a FALSE).
 - 2. **Insiemi di soddisfazione clausola (Type 2):** Per ogni clausola $C_j = (\lambda_{j,1} \lor \lambda_{j,2} \lor \lambda_{j,3})$ ($j \in [1, L]$), creiamo tre insiemi:
 - $S_{i,1} = \{c_i, l_{i,1}\}$
 - $S_{i,2} = \{c_i, l_{i,2}\}$
 - $S_{i,3} = \{c_i, l_{i,3}\}$

(Questi insiemi rappresentano la soddisfazione della clausola C_j tramite uno dei suoi letterali. Un solo insieme di questo tipo può essere scelto per ogni c_j nella partizione).

- 3. **Insiemi di pulizia letterale (Type 3):** Per ogni oggetto letterale $l_{j,k}$ in U_{ϕ} , creiamo un insieme singleton:
 - $\{l_{i,k}\}$

(Questi insiemi sono usati per "raccogliere le briciole", cioè per coprire gli oggetti $l_{j,k}$ che non sono stati coperti dagli insiemi di Tipo 1 o Tipo 2 selezionati per la partizione. Sono usati come elementi di "riserva").

Esempio 2 (Costruzione di (U_{ϕ}, F_{ϕ})). $Sia \phi = (x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee x_4)$. Qui N = 4 (variabili x_1, \ldots, x_4) e L = 2 (clausole C_1, C_2).

Universo U_{ϕ} :

- $Variabili: \{var_1, var_2, var_3, var_4\}$
- Clausole: $\{c_1, c_2\}$
- Letterali: $\{l_{1,1}, l_{1,2}, l_{1,3}, l_{2,1}, l_{2,2}, l_{2,3}\}$ (corrispondenti a $x_1, \neg x_2, x_3$ per C_1 e $\neg x_1, x_2, x_4$ per C_2).

Quindi, $U_{\phi} = \{var_1, var_2, var_3, var_4, c_1, c_2, l_{1,1}, l_{1,2}, l_{1,3}, l_{2,1}, l_{2,2}, l_{2,3}\}.$ Famiglia F_{ϕ} :

• Tipo 1 (assegnamento variabile):

$$\begin{split} &-T_1^{true} = \{var_1\} \cup \{l_{2,1} \ (per \ \neg x_1 \ in \ C_2)\} \\ &-T_1^{false} = \{var_1\} \cup \{l_{1,1} \ (per \ x_1 \ in \ C_1)\} \\ &-T_2^{true} = \{var_2\} \cup \{l_{1,2} \ (per \ \neg x_2 \ in \ C_1)\} \\ &-T_2^{false} = \{var_2\} \cup \{l_{2,2} \ (per \ x_2 \ in \ C_2)\} \\ &-T_3^{true} = \{var_3\} \cup \emptyset \\ &-T_3^{false} = \{var_3\} \cup \{l_{1,3} \ (per \ x_3 \ in \ C_1)\} \\ &-T_4^{true} = \{var_4\} \cup \emptyset \\ &-T_4^{false} = \{var_4\} \cup \{l_{2,3} \ (per \ x_4 \ in \ C_2)\} \end{split}$$

• Tipo 2 (soddisfazione clausola):

$$-S_{1,1} = \{c_1, l_{1,1}\}$$

$$-S_{1,2} = \{c_1, l_{1,2}\}$$

$$-S_{1,3} = \{c_1, l_{1,3}\}$$

$$-S_{2,1} = \{c_2, l_{2,1}\}$$

$$-S_{2,2} = \{c_2, l_{2,2}\}$$

$$-S_{2,3} = \{c_2, l_{2,3}\}$$

- Tipo 3 (pulizia letterale):
 - $-\{l_{1,1}\},\{l_{1,2}\},\{l_{1,3}\},\{l_{2,1}\},\{l_{2,2}\},\{l_{2,3}\}$

2.2.2 Dimostrazione dell'Equivalenza

Teorema 1. La formula ϕ è soddisfacibile se e solo se l'istanza di Exact Cover (U_{ϕ}, F_{ϕ}) ha una partizione.

Dimostrazione. Parte 1: Se ϕ è soddisfacibile \Longrightarrow (U_{ϕ}, F_{ϕ}) ha una partizione. Supponiamo che ϕ sia soddisfacibile. Allora esiste un assegnamento di verità σ : $\{x_1, \ldots, x_N\} \to \{\text{TRUE}, \text{FALSE}\}$ tale che ϕ è TRUE. Costruiamo una partizione $P \subseteq F_{\phi}$ come segue:

- 1. Per ogni variabile x_i :
 - Se $\sigma(x_i) = \text{TRUE}$, includiamo T_i^{true} in P.
 - Se $\sigma(x_i)$ = FALSE, includiamo T_i^{false} in P.

Questi insiemi coprono tutti gli oggetti var $_i$ esattamente una volta. Inoltre, coprono alcuni oggetti $l_{i,k}$ (quelli che vengono falsificati dall'assegnamento σ).

- 2. Per ogni clausola C_j : Poiché ϕ è soddisfacibile, C_j è soddisfatta da σ . Ciò significa che almeno uno dei letterali in C_j è TRUE sotto σ . Scegliamo esattamente uno di questi letterali $\lambda_{j,k'}$ che rende C_j vera, e includiamo l'insieme $S_{j,k'} = \{c_j, l_{j,k'}\}$ in P. Questi insiemi coprono tutti gli oggetti c_j esattamente una volta. Essi coprono anche un oggetto $l_{j,k'}$ per ogni clausola. Questi $l_{j,k'}$ sono oggetti che corrispondono a letterali veri sotto σ , e quindi non sono stati coperti dagli insiemi di Tipo 1.
- 3. Per tutti gli oggetti $l_{j,k}$ rimanenti (quelli non coperti dagli insiemi di Tipo 1 o Tipo 2), includiamo il loro singleton $\{l_{j,k}\}$ in P.

Verifichiamo che P è una partizione:

• Disgiunzione:

- Gli insiemi di Tipo 1 (assegnamento variabile) sono disgiunti tra loro per lo stesso var_i perché solo uno T_i^{true} o T_i^{false} è scelto. Per var_i \neq var_k, essi non condividono var oggetti. Possono condividere oggetti $l_{j,k}$, ma non è un problema per la disgiunzione complessiva perché l'insieme selezionato sarà un sottoinsieme della partizione finale.
- Gli insiemi di Tipo 2 (soddisfazione clausola) sono disgiunti tra loro per la stessa c_j perché solo uno $S_{j,k'}$ è scelto. Per $c_j \neq c_k$, non condividono c oggetti. Possono condividere l oggetti, ma questo è gestito dal processo di selezione e dalla gestione dei singleton.
- Gli insiemi di Tipo 1 e Tipo 2 non condividono oggetti var_i o c_j . Possono condividere oggetti $l_{j,k}$. Per costruzione, gli $l_{j,k}$ in T_i^{true} o T_i^{false} sono quelli corrispondenti a letterali falsi sotto σ . Gli $l_{j,k'}$ in $S_{j,k'}$ sono quelli corrispondenti a letterali veri sotto σ . Dunque, un oggetto $l_{j,k}$ non può essere presente sia in un T_i selezionato che in un S_j selezionato.
- I singleton $\{l_{j,k}\}$ sono usati solo per coprire gli $l_{j,k}$ che non sono stati inclusi in nessun T_i o S_j selezionato.

• Unione:

- Gli oggetti var $_i$ sono coperti esattamente una volta da T_i^{true} o T_i^{false} .
- Gli oggetti c_i sono coperti esattamente una volta da $S_{i,k'}$ (uno per clausola).

– Gli oggetti $l_{j,k}$ sono coperti: se falsificati da σ , sono inclusi in un T_i selezionato; se rendono vera una clausola C_j e vengono scelti per la partizione, sono inclusi in un $S_{j,k'}$ selezionato; altrimenti, sono coperti dal loro singleton $\{l_{j,k}\}$. Poiché ogni $l_{j,k}$ è o falsificato o vero (e se vero, può essere scelto per una clausola), tutti gli $l_{j,k}$ sono coperti.

Pertanto, P è una partizione di U_{ϕ} .

Parte 2: Se (U_{ϕ}, F_{ϕ}) ha una partizione $\implies \phi$ è soddisfacibile. Supponiamo che esista una partizione $P \subseteq F_{\phi}$ di U_{ϕ} . Definiamo un assegnamento di verità σ per le variabili di ϕ : Per ogni variabile x_i :

- Se T_i^{true} ∈ P, allora $\sigma(x_i)$ = TRUE.
- Se T_i^{false} ∈ P, allora $\sigma(x_i)$ = FALSE.

Verifica di σ :

- **Ogni variabile ha un assegnamento:** Ogni oggetto $\mathrm{var}_i \in U_{\phi}$ deve essere coperto da un insieme in P. L'unico modo per coprire var_i è includere o T_i^{true} o T_i^{false} in P. Poiché P è una partizione, non possono essere entrambi in P (condividerebbero var_i), quindi esattamente uno è in P. Ciò assicura che σ assegna un valore a ogni variabile.
- **Assegnamento consistente:** Poiché solo uno tra T_i^{true} e T_i^{false} può essere in P, σ non assegna contemporaneamente TRUE e FALSE a nessuna variabile.

Soddisfazione di ϕ : Per dimostrare che σ soddisfa ϕ , dobbiamo mostrare che ogni clausola C_j è TRUE sotto σ . Per ogni oggetto $c_j \in U_\phi$, esso deve essere coperto da un insieme in P. Gli unici insiemi in F_ϕ che contengono c_j sono $S_{j,1}, S_{j,2}, S_{j,3}$. Dunque, esattamente uno di questi insiemi, diciamo $S_{j,k'} = \{c_j, l_{j,k'}\}$, deve essere in P. Questo significa che il letterale $\lambda_{j,k'}$ corrispondente a $l_{j,k'}$ deve essere TRUE sotto l'assegnamento σ . Se $\lambda_{j,k'}$ fosse FALSE sotto σ , allora l'oggetto $l_{j,k'}$ sarebbe incluso in uno degli insiemi T_i^{true} o T_i^{false} selezionati (poiché $l_{j,k'}$ è falsificato). Ma se $l_{j,k'}$ fosse in un T_i selezionato e anche in $S_{j,k'}$ (che è in P), ci sarebbe un'intersezione tra T_i e $S_{j,k'}$, violando la proprietà di disgiunzione di una partizione. Pertanto, $\lambda_{j,k'}$ deve essere TRUE sotto σ , il che significa che la clausola C_j è soddisfatta. Poiché questo vale per ogni C_i , ϕ è soddisfacibile.

Conclusione: Exact Cover è NP-completo.

3 Knapsack (Problema della Bisaccia)

3.1 Definizione dell'ottimizzazione e della decisione

Definizione 4 (Knapsack (Versione Ottimizzazione)). *Input:* Un insieme di N oggetti, per ognuno dei quali:

- w_i : un peso associato.
- v_i : un valore associato.

Una capacità massima W (peso della bisaccia). **Domanda:** Trovare un sottoinsieme di oggetti $S \subseteq \{1, ..., N\}$ tale che la somma dei pesi degli oggetti in S non superi W ($\sum_{i \in S} w_i \leq W$) e la somma dei valori degli oggetti in S sia massimizzata ($\sum_{i \in S} v_i$ sia massima).

La versione di ottimizzazione di Knapsack non è direttamente in NP, poiché NP è una classe di problemi di decisione. Per studiarlo nella teoria della complessità, usiamo la versione di decisione:

Definizione 5 (Knapsack (Versione Decisione)). Input: Un insieme di N oggetti, per ognuno dei quali:

- w_i : un peso associato.
- v_i : un valore associato.

Una capacità massima W (peso della bisaccia) e un valore soglia K. **Domanda:** Esiste un sottoinsieme di oggetti $S \subseteq \{1, ..., N\}$ tale che la somma dei pesi degli oggetti in S non superi W ($\sum_{i \in S} w_i \leq W$) e la somma dei valori degli oggetti in S sia almeno K ($\sum_{i \in S} v_i \geq K$)?

3.2 Membership in NP (Versione Decisione)

Knapsack (versione decisione) è in NP.

- **Guess (Indovina):** Un certificato per un'istanza YES di Knapsack è il sottoinsieme $S \subseteq \{1, ..., N\}$ degli oggetti scelti.
- Check (Verifica): Dati *S*, possiamo verificare in tempo polinomiale se:
 - 1. La somma dei pesi $\sum_{i \in S} w_i \leq W$.
 - 2. La somma dei valori $\sum_{i \in S} v_i \ge K$.

Queste verifiche sono semplici sommatorie e confronti, eseguibili in tempo polinomiale.

3.3 Hardness (Riduzione da Exact Cover)

Dimostriamo che Knapsack (decisione) è NP-hard riducendolo da Exact Cover. Sia (U,F) un'istanza di Exact Cover, con $U=\{u_1,\ldots,u_N\}$ e $F=\{S_1,\ldots,S_M\}$. Dobbiamo costruire una funzione polinomiale f che trasforma (U,F) in un'istanza di Knapsack (oggetti, pesi w_i , valori v_i , capacità W, soglia K) tale che (U,F) è un'istanza YES di Exact Cover se e solo se l'istanza di Knapsack generata è un'istanza YES.

3.3.1 Costruzione dell'Istanza di Knapsack

La riduzione sfrutta una particolare forma dell'istanza di Knapsack.

- 1. Assunzione Specifiche: Costruiremo un'istanza di Knapsack in cui:
 - I valori sono uguali ai pesi: $v_i = w_i$ per ogni oggetto i.
 - La soglia K è uguale alla capacità W: K = W.

Con queste assunzioni, il problema di decisione del Knapsack diventa: "Esiste un sottoinsieme di oggetti S tale che $\sum_{i \in S} w_i = W$?" (poiché $\sum w_i \leq W$ e $\sum v_i \geq K$ con $v_i = w_i$ e K = W implica $\sum w_i \geq W$, quindi uguaglianza).

- **2. Oggetti della Bisaccia:** Ci sono M oggetti nella bisaccia, uno per ogni insieme $S_i \in F$.
- **3. Pesi** (w_j) e Valori (v_j): Per ogni oggetto j (corrispondente al set $S_j \in F$), definiamo il suo peso w_j (e valore $v_j = w_j$) in modo che codifichi la composizione del set S_j . Per evitare i problemi di "riporto" che si avrebbero con la rappresentazione binaria standard, useremo una base numerica sufficientemente grande, in particolare M+1 (dove M è il numero totale di insiemi in F). Questo assicura che la somma di M cifre 0 o 1 in qualsiasi posizione non genererà un riporto.

Il peso w_i (e valore v_i) per l'oggetto j (che rappresenta l'insieme $S_i \in F$) è definito come:

$$w_j = \sum_{k=1}^N \delta_{j,k} \cdot (M+1)^{N-k}$$

dove:

- *N* è il numero di elementi nell'universo *U*.
- *M* è il numero di insiemi nella famiglia *F*.
- $\delta_{j,k} = 1$ se l'elemento $u_k \in U$ è contenuto nell'insieme S_j (cioè $u_k \in S_j$).
- $\delta_{j,k} = 0$ se l'elemento $u_k \in U$ non è contenuto nell'insieme S_j (cioè $u_k \notin S_j$).

Questa formula interpreta w_j come un numero in base (M+1), dove la k-esima cifra (da sinistra, corrispondente a u_k) è 1 se $u_k \in S_j$ e 0 altrimenti.

4. Capacità W **e Soglia** K: La capacità della bisaccia W (e la soglia K) è definita come il numero la cui rappresentazione in base (M+1) è composta da tutti '1'. Questo significa che ogni elemento dell'universo deve essere coperto esattamente una volta.

$$W = K = \sum_{k=1}^{N} 1 \cdot (M+1)^{N-k}$$

Esempio 3 (Knapsack Reduction (Base M + 1)). *Sia* $U = \{u_1, u_2, u_3, u_4\}$ (N = 4) e $F = \{S_1, S_2, S_3\}$ (M = 3).

- $S_1 = \{u_3, u_4\}$
- $S_2 = \{u_2, u_4\}$
- $S_3 = \{u_2, u_3, u_4\}$

La base sarà M + 1 = 3 + 1 = 4. I pesi w_j (e valori v_j) sono:

- $w_1 = (0011)_4 = 0.4^3 + 0.4^2 + 1.4^1 + 1.4^0 = 4 + 1 = 5$
- $w_2 = (0101)_4 = 0.4^3 + 1.4^2 + 0.4^1 + 1.4^0 = 16 + 1 = 17$
- $w_3 = (0111)_4 = 0 \cdot 4^3 + 1 \cdot 4^2 + 1 \cdot 4^1 + 1 \cdot 4^0 = 16 + 4 + 1 = 21$

La capacità e soglia W = K sono:

•
$$W = K = (1111)_4 = 1 \cdot 4^3 + 1 \cdot 4^2 + 1 \cdot 4^1 + 1 \cdot 4^0 = 64 + 16 + 4 + 1 = 85$$

In questo esempio, l'istanza di Exact Cover è NO (l'elemento u_1 non è coperto da nessun set in F). Se la riduzione funziona correttamente, l'istanza di Knapsack generata dovrebbe essere anch'essa NO (non dovrebbe essere possibile sommare w_i a 85).

3.3.2 Dimostrazione dell'Equivalenza

Teorema 2. L'istanza di Exact Cover (U, F) ha una partizione se e solo se l'istanza di Knapsack costruita ha una soluzione con peso totale W e valore totale K.

Dimostrazione. Ricordiamo che, per costruzione, il problema Knapsack si riduce a trovare un sottoinsieme di pesi che sommi esattamente a W, poiché $v_i = w_i$ e K = W.

Parte 1: Se (U, F) ha una partizione \implies l'istanza di Knapsack ha una soluzione. Supponiamo che esista un sottoinsieme $F' \subseteq F$ tale che F' è una partizione di U. Questo significa che:

- 1. Gli insiemi in F' sono a due a due disgiunti: $S_a \cap S_b = \emptyset$ per ogni $S_a, S_b \in F', a \neq b$.
- 2. La loro unione è $U: \bigcup_{S \in F'} S = U$.

Consideriamo il sottoinsieme di oggetti Knapsack corrispondente agli insiemi in F'. Siano questi oggetti $S'_{items} = \{j \mid S_j \in F'\}$. Calcoliamo la somma dei pesi di questi oggetti: $\sum_{j \in S'_{items}} w_j$. Per la definizione di w_j e le proprietà di F':

$$\sum_{j \in S_{items}'} w_j = \sum_{j \in S_{items}'} \left(\sum_{k=1}^N \delta_{j,k} \cdot (M+1)^{N-k} \right)$$

Invertendo l'ordine delle sommatorie:

$$\sum_{k=1}^{N} \left(\sum_{j \in S'_{items}} \delta_{j,k} \right) \cdot (M+1)^{N-k}$$

Poiché F' è una partizione di U:

• Ogni elemento $u_k \in U$ appartiene a *esattamente uno* degli insiemi in F'. Questo significa che per ogni $k \in \{1, ..., N\}$, la somma $\sum_{j \in S'_{items}} \delta_{j,k}$ sarà esattamente 1. (Non può essere più di 1 perché i set sono disgiunti; non può essere meno di 1 perché la loro unione è U).

Quindi, la somma dei pesi diventa:

$$\sum_{k=1}^{N} 1 \cdot (M+1)^{N-k}$$

Questa è esattamente la definizione di W.

$$\sum_{j \in S'_{items}} w_j = W$$

Poiché per costruzione $v_j = w_j$ e K = W, anche $\sum_{j \in S'_{items}} v_j = K$. Dunque, se (U, F) ha una partizione, l'istanza di Knapsack ha una soluzione.

Parte 2: Se l'istanza di Knapsack ha una soluzione $\implies (U,F)$ ha una partizione. Supponiamo che esista un sottoinsieme di oggetti Knapsack S'_{items} tale che $\sum_{j \in S'_{items}} w_j = W$. Consideriamo la somma $\sum_{j \in S'_{items}} w_j$ in base (M+1). Ogni w_j è un numero in base (M+1) le cui cifre sono 0 o 1. La somma delle cifre in una data posizione k (corrispondente all'elemento $u_k \in U$) è data da $\sum_{j \in S'_{items}} \delta_{j,k}$. Poiché al massimo M numeri sono sommati (corrispondenti agli M insiemi in

F), e la base è (M+1), non ci saranno mai riporti. Questo è cruciale: la somma di M cifre (0 o 1) in base (M+1) non può generare un riporto. La somma massima possibile per una colonna è $M \times 1 = M$, che è una cifra valida in base (M+1) (da 0 a M). Dato che la somma totale è $W = \sum_{k=1}^{N} 1 \cdot (M+1)^{N-k}$ (il numero con tutte le cifre 1 in base M+1) e non ci sono riporti, questo implica che per ogni posizione k, la somma delle cifre in quella posizione deve essere esattamente 1.

$$\forall k \in \{1, \dots, N\}, \quad \sum_{j \in S'_{items}} \delta_{j,k} = 1$$

Questa condizione significa che ogni elemento $u_k \in U$ è contenuto in esattamente uno degli insiemi S_j il cui oggetto corrispondente è stato selezionato per la bisaccia. Pertanto, gli insiemi $\{S_j \mid j \in S'_{items}\}$ formano una partizione di U. Dunque, se l'istanza di Knapsack ha una soluzione, (U, F) ha una partizione.

3.4 Conclusione

Avendo dimostrato che Knapsack (decisione) è in NP e NP-hard (tramite riduzione da Exact Cover), concludiamo che **Knapsack è NP-completo**. Il problema Knapsack può essere formulato come un problema di **Programmazione Lineare Intera (ILP)**. Poiché Knapsack è NP-completo, e ILP è un problema più generale che include Knapsack come caso speciale, si deduce che la **Programmazione Lineare Intera è NP-hard**.